1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
|
/**
This file is part of Kig, a KDE program for Interactive Geometry...
Copyright (C) 2002 Maurizio Paolini <[email protected]>
Copyright (C) 2003 Dominique Devriese <[email protected]>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
USA
**/
#include "kigtransform.h"
#include "kignumerics.h"
#include "common.h"
#include <cmath>
#include <klocale.h>
#include <kdebug.h>
// Transformation getProjectiveTransformation ( int argsnum,
// Object *transforms[], bool& valid )
// {
// valid = true;
// assert ( argsnum > 0 );
// int argn = 0;
// Object* transform = transforms[argn++];
// if (transform->toVector())
// {
// // translation
// assert (argn == argsnum);
// Vector* v = transform->toVector();
// Coordinate dir = v->getDir();
// return Transformation::translation( dir );
// }
// if (transform->toPoint())
// {
// // point reflection ( or is point symmetry the correct term ? )
// assert (argn == argsnum);
// Point* p = transform->toPoint();
// return Transformation::pointReflection( p->getCoord() );
// }
// if (transform->toLine())
// {
// // line reflection ( or is it line symmetry ? )
// Line* line = transform->toLine();
// assert (argn == argsnum);
// return Transformation::lineReflection( line->lineData() );
// }
// if (transform->toRay())
// {
// // domi: sorry, but what kind of transformation does this do ?
// // i'm guessing it's some sort of rotation, but i'm not
// // really sure..
// Ray* line = transform->toRay();
// Coordinate d = line->direction().normalize();
// Coordinate t = line->p1();
// double alpha = 0.1*M_PI/2; // a small angle for the DrawPrelim
// if (argn < argsnum)
// {
// Angle* angle = transforms[argn++]->toAngle();
// alpha = angle->size();
// }
// assert (argn == argsnum);
// return Transformation::projectiveRotation( alpha, d, t );
// }
// if (transform->toAngle())
// {
// // rotation..
// Coordinate center = Coordinate( 0., 0. );
// if (argn < argsnum)
// {
// Object* arg = transforms[argn++];
// assert (arg->toPoint());
// center = arg->toPoint()->getCoord();
// }
// Angle* angle = transform->toAngle();
// double alpha = angle->size();
// assert (argn == argsnum);
// return Transformation::rotation( alpha, center );
// }
// if (transform->toSegment()) // this is a scaling
// {
// Segment* segment = transform->toSegment();
// Coordinate p = segment->p2() - segment->p1();
// double s = p.length();
// if (argn < argsnum)
// {
// Object* arg = transforms[argn++];
// if (arg->toSegment()) // s is the length of the first segment
// // divided by the length of the second..
// {
// Segment* segment = arg->toSegment();
// Coordinate p = segment->p2() - segment->p1();
// s /= p.length();
// if (argn < argsnum) arg = transforms[argn++];
// }
// if (arg->toPoint()) // scaling w.r. to a point
// {
// Point* p = arg->toPoint();
// assert (argn == argsnum);
// return Transformation::scaling( s, p->getCoord() );
// }
// if (arg->toLine()) // scaling w.r. to a line
// {
// Line* line = arg->toLine();
// assert( argn == argsnum );
// return Transformation::scaling( s, line->lineData() );
// }
// }
// return Transformation::scaling( s, Coordinate( 0., 0. ) );
// }
// valid = false;
// return Transformation::identity();
// }
// tWantArgsResult WantTransformation ( Objects::const_iterator& i,
// const Objects& os )
// {
// Object* o = *i++;
// if (o->toVector()) return tComplete;
// if (o->toPoint()) return tComplete;
// if (o->toLine()) return tComplete;
// if (o->toAngle())
// {
// if ( i == os.end() ) return tNotComplete;
// o = *i++;
// if (o->toPoint()) return tComplete;
// if (o->toLine()) return tComplete;
// return tNotGood;
// }
// if (o->toRay())
// {
// if ( i == os.end() ) return tNotComplete;
// o = *i++;
// if (o->toAngle()) return tComplete;
// return tNotGood;
// }
// if (o->toSegment())
// {
// if ( i == os.end() ) return tNotComplete;
// o = *i++;
// if ( o->toSegment() )
// {
// if ( i == os.end() ) return tNotComplete;
// o = *i++;
// }
// if (o->toPoint()) return tComplete;
// if (o->toLine()) return tComplete;
// return tNotGood;
// }
// return tNotGood;
// }
// QString getTransformMessage ( const Objects& os, const Object *o )
// {
// int size = os.size();
// switch (size)
// {
// case 1:
// if (o->toVector()) return i18n("translate by this vector");
// if (o->toPoint()) return i18n("central symmetry by this point. You"
// " can obtain different transformations by clicking on lines (mirror),"
// " vectors (translation), angles (rotation), segments (scaling) and rays"
// " (projective transformation)");
// if (o->toLine()) return i18n("reflect in this line");
// if (o->toAngle()) return i18n("rotate by this angle");
// if (o->toSegment()) return i18n("scale using the length of this vector");
// if (o->toRay()) return i18n("a projective transformation in the direction"
// " indicated by this ray, it is a rotation in the projective plane"
// " about a point at infinity");
// return i18n("Use this transformation");
// case 2: // we ask for the first parameter of the transformation
// case 3:
// if (os[1]->toAngle())
// {
// if (o->toPoint()) return i18n("about this point");
// assert (false);
// }
// if (os[1]->toSegment())
// {
// if (o->toSegment())
// return i18n("relative to the length of this other vector");
// if (o->toPoint())
// return i18n("about this point");
// if (o->toLine())
// return i18n("about this line");
// }
// if (os[1]->toRay())
// {
// if (o->toAngle()) return i18n("rotate by this angle in the projective"
// " plane");
// }
// return i18n("Using this object");
// default: assert(false);
// }
// return i18n("Use this transformation");
// }
/* domi: not necessary anymore, homotheticness is kept as a bool in
* the Transformation class..
* keeping it here, in case a need for it arises some time in the
* future...
* decide if the given transformation is homotetic
*/
// bool isHomoteticTransformation ( double transformation[3][3] )
// {
// if (transformation[0][1] != 0 || transformation[0][2] != 0) return (false);
// // test the orthogonality of the matrix 2x2 of second and third rows
// // and columns
// if (fabs(fabs(transformation[1][1]) -
// fabs(transformation[2][2])) > 1e-8) return (false);
// if (fabs(fabs(transformation[1][2]) -
// fabs(transformation[2][1])) > 1e-8) return (false);
// return transformation[1][2] * transformation[2][1] *
// transformation[1][1] * transformation[2][2] <= 0.;
// }
const Transformation Transformation::identity()
{
Transformation ret;
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 3; ++j )
ret.mdata[i][j] = ( i == j ? 1 : 0 );
ret.mIsHomothety = ret.mIsAffine = true;
return ret;
}
const Transformation Transformation::scalingOverPoint( double factor, const Coordinate& center )
{
Transformation ret;
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 3; ++j )
ret.mdata[i][j] = ( i == j ? factor : 0 );
ret.mdata[0][0] = 1;
ret.mdata[1][0] = center.x - factor * center.x;
ret.mdata[2][0] = center.y - factor * center.y;
ret.mIsHomothety = ret.mIsAffine = true;
return ret;
}
const Transformation Transformation::translation( const Coordinate& c )
{
Transformation ret = identity();
ret.mdata[1][0] = c.x;
ret.mdata[2][0] = c.y;
// this is already set in the identity() constructor, but just for
// clarity..
ret.mIsHomothety = ret.mIsAffine = true;
return ret;
}
const Transformation Transformation::pointReflection( const Coordinate& c )
{
Transformation ret = scalingOverPoint( -1, c );
ret.mIsHomothety = ret.mIsAffine = true;
return ret;
}
const Transformation operator*( const Transformation& a, const Transformation& b )
{
// just multiply the two matrices..
Transformation ret;
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 3; ++j )
{
ret.mdata[i][j] = 0;
for ( int k = 0; k < 3; ++k )
ret.mdata[i][j] += a.mdata[i][k] * b.mdata[k][j];
};
// combination of two homotheties is a homothety..
ret.mIsHomothety = a.mIsHomothety && b.mIsHomothety;
// combination of two affinities is affine..
ret.mIsAffine = a.mIsAffine && b.mIsAffine;
return ret;
}
const Transformation Transformation::lineReflection( const LineData& l )
{
Transformation ret = scalingOverLine( -1, l );
// a reflection is a homothety...
ret.mIsHomothety = ret.mIsAffine = true;
return ret;
}
const Transformation Transformation::scalingOverLine( double factor, const LineData& l )
{
Transformation ret = identity();
Coordinate a = l.a;
Coordinate d = l.dir();
double dirnormsq = d.squareLength();
ret.mdata[1][1] = (d.x*d.x + factor*d.y*d.y)/dirnormsq;
ret.mdata[2][2] = (d.y*d.y + factor*d.x*d.x)/dirnormsq;
ret.mdata[1][2] = ret.mdata[2][1] = (d.x*d.y - factor*d.x*d.y)/dirnormsq;
ret.mdata[1][0] = a.x - ret.mdata[1][1]*a.x - ret.mdata[1][2]*a.y;
ret.mdata[2][0] = a.y - ret.mdata[2][1]*a.x - ret.mdata[2][2]*a.y;
// domi: is 1e-8 a good value ?
ret.mIsHomothety = ( fabs( factor - 1 ) < 1e-8 || fabs ( factor + 1 ) < 1e-8 );
ret.mIsAffine = true;
return ret;
}
const Transformation Transformation::harmonicHomology(
const Coordinate& center, const LineData& axis )
{
// this is a well known projective transformation. We find it by first
// computing the homogeneous equation of the axis ax + by + cz = 0
// then a straightforward computation shows that the 3x3 matrix describing
// the transformation is of the form:
//
// (r . C) Id - 2 (C tensor r)
//
// where r = [c, a, b], C = [1, Cx, Cy], Cx and Cy are the coordinates of
// the center, '.' denotes the scalar product, Id is the identity matrix,
// 'tensor' is the tensor product producing a 3x3 matrix.
//
// note: here we decide to use coordinate '0' in place of the third coordinate
// in homogeneous notation; e.g. C = [1, cx, cy]
Coordinate pointa = axis.a;
Coordinate pointb = axis.b;
double a = pointa.y - pointb.y;
double b = pointb.x - pointa.x;
double c = pointa.x*pointb.y - pointa.y*pointb.x;
double cx = center.x;
double cy = center.y;
double scalprod = a*cx + b*cy + c;
scalprod *= 0.5;
Transformation ret;
ret.mdata[0][0] = c - scalprod;
ret.mdata[0][1] = a;
ret.mdata[0][2] = b;
ret.mdata[1][0] = c*cx;
ret.mdata[1][1] = a*cx - scalprod;
ret.mdata[1][2] = b*cx;
ret.mdata[2][0] = c*cy;
ret.mdata[2][1] = a*cy;
ret.mdata[2][2] = b*cy - scalprod;
ret.mIsHomothety = ret.mIsAffine = false;
return ret;
}
const Transformation Transformation::affinityGI3P(
const std::vector<Coordinate>& FromPoints,
const std::vector<Coordinate>& ToPoints,
bool& valid )
{
// construct the (generically) unique affinity that transforms 3 given
// point into 3 other given points; i.e. it depends on the coordinates of
// a total of 6 points. This actually amounts in solving a 6x6 linear
// system to find the entries of a 2x2 linear transformation matrix T
// and of a translation vector t.
// If Pi denotes one of the starting points and Qi the corresponding
// final position we actually have to solve: Qi = t + T Pi, for i=1,2,3
// (each one is a vector equation, so that it really gives 2 equations).
// In our context T and t are used to build a 3x3 projective transformation
// as follows:
//
// [ 1 0 0 ]
// [ t1 T11 T12 ]
// [ t2 T21 T22 ]
//
// In order to take advantage of the two functions "GaussianElimination"
// and "BackwardSubstitution", which are specifically aimed at solving
// homogeneous underdetermined linear systems, we just add a further
// unknown m and solve for t + T Pi - m Qi = 0. Since our functions
// returns a nonzero solution we shall have a nonzero 'm' in the end and
// can build the 3x3 matrix as follows:
//
// [ m 0 0 ]
// [ t1 T11 T12 ]
// [ t2 T21 T22 ]
//
// we order the unknowns as follows: m, t1, t2, T11, T12, T21, T22
double row0[7], row1[7], row2[7], row3[7], row4[7], row5[7];
double *matrix[6] = {row0, row1, row2, row3, row4, row5};
double solution[7];
int scambio[7];
assert (FromPoints.size() == 3);
assert (ToPoints.size() == 3);
// fill in the matrix elements
for ( int i = 0; i < 6; i++ )
{
for ( int j = 0; j < 7; j++ )
{
matrix[i][j] = 0.0;
}
}
for ( int i = 0; i < 3; i++ )
{
Coordinate p = FromPoints[i];
Coordinate q = ToPoints[i];
matrix[i][0] = -q.x;
matrix[i][1] = 1.0;
matrix[i][3] = p.x;
matrix[i][4] = p.y;
matrix[i+3][0] = -q.y;
matrix[i+3][2] = 1.0;
matrix[i+3][5] = p.x;
matrix[i+3][6] = p.y;
}
Transformation ret;
valid = true;
if ( ! GaussianElimination( matrix, 6, 7, scambio ) )
{ valid = false; return ret; }
// fine della fase di eliminazione
BackwardSubstitution( matrix, 6, 7, scambio, solution );
// now we can build the 3x3 transformation matrix; remember that
// unknown 0 is the multiplicator 'm'
ret.mdata[0][0] = solution[0];
ret.mdata[0][1] = ret.mdata[0][2] = 0.0;
ret.mdata[1][0] = solution[1];
ret.mdata[2][0] = solution[2];
ret.mdata[1][1] = solution[3];
ret.mdata[1][2] = solution[4];
ret.mdata[2][1] = solution[5];
ret.mdata[2][2] = solution[6];
ret.mIsHomothety = false;
ret.mIsAffine = true;
return ret;
}
const Transformation Transformation::projectivityGI4P(
const std::vector<Coordinate>& FromPoints,
const std::vector<Coordinate>& ToPoints,
bool& valid )
{
// construct the (generically) unique projectivity that transforms 4 given
// point into 4 other given points; i.e. it depends on the coordinates of
// a total of 8 points. This actually amounts in solving an underdetermined
// homogeneous linear system.
double
row0[13], row1[13], row2[13], row3[13], row4[13], row5[13], row6[13], row7[13],
row8[13], row9[13], row10[13], row11[13];
double *matrix[12] = {row0, row1, row2, row3, row4, row5, row6, row7,
row8, row9, row10, row11};
double solution[13];
int scambio[13];
assert (FromPoints.size() == 4);
assert (ToPoints.size() == 4);
// fill in the matrix elements
for ( int i = 0; i < 12; i++ )
{
for ( int j = 0; j < 13; j++ )
{
matrix[i][j] = 0.0;
}
}
for ( int i = 0; i < 4; i++ )
{
Coordinate p = FromPoints[i];
Coordinate q = ToPoints[i];
matrix[i][0] = matrix[4+i][3] = matrix[8+i][6] = 1.0;
matrix[i][1] = matrix[4+i][4] = matrix[8+i][7] = p.x;
matrix[i][2] = matrix[4+i][5] = matrix[8+i][8] = p.y;
matrix[i][9+i] = -1.0;
matrix[4+i][9+i] = -q.x;
matrix[8+i][9+i] = -q.y;
}
Transformation ret;
valid = true;
if ( ! GaussianElimination( matrix, 12, 13, scambio ) )
{ valid = false; return ret; }
// fine della fase di eliminazione
BackwardSubstitution( matrix, 12, 13, scambio, solution );
// now we can build the 3x3 transformation matrix; remember that
// unknowns from 9 to 13 are just multiplicators that we don't need here
int k = 0;
for ( int i = 0; i < 3; i++ )
{
for ( int j = 0; j < 3; j++ )
{
ret.mdata[i][j] = solution[k++];
}
}
ret.mIsHomothety = ret.mIsAffine = false;
return ret;
}
const Transformation Transformation::castShadow(
const Coordinate& lightsrc, const LineData& l )
{
// first deal with the line l, I need to find an appropriate reflection
// that transforms l onto the x-axis
Coordinate d = l.dir();
Coordinate a = l.a;
double k = d.length();
if ( d.x < 0 ) k *= -1; // for numerical stability
Coordinate w = d + Coordinate( k, 0 );
// w /= w.length();
// w defines a Householder transformation, but we don't need to normalize
// it here.
// warning: this w is the orthogonal of the w of the textbooks!
// this is fine for us since in this way it indicates the line direction
Coordinate ra = Coordinate ( a.x + w.y*a.y/(2*w.x), a.y/2 );
Transformation sym = lineReflection ( LineData( ra, ra + w ) );
// in the new coordinates the line is the x-axis
// I must transform the point
Coordinate modlightsrc = sym.apply ( lightsrc );
Transformation ret = identity();
// parameter t indicates the distance of the light source from
// the plane of the drawing. A negative value means that the light
// source is behind the plane.
double t = -1.0;
// double t = -modlightsrc.y; <-- this gives the old transformation!
double e = modlightsrc.y - t;
ret.mdata[0][0] = e;
ret.mdata[0][2] = -1;
ret.mdata[1][1] = e;
ret.mdata[1][2] = -modlightsrc.x;
ret.mdata[2][2] = -t;
ret.mIsHomothety = ret.mIsAffine = false;
return sym*ret*sym;
// return translation( t )*ret*translation( -t );
}
const Transformation Transformation::projectiveRotation(
double alpha, const Coordinate& d, const Coordinate& t )
{
Transformation ret;
double cosalpha = cos( alpha );
double sinalpha = sin( alpha );
ret.mdata[0][0] = cosalpha;
ret.mdata[1][1] = cosalpha*d.x*d.x + d.y*d.y;
ret.mdata[0][1] = -sinalpha*d.x;
ret.mdata[1][0] = sinalpha*d.x;
ret.mdata[0][2] = -sinalpha*d.y;
ret.mdata[2][0] = sinalpha*d.y;
ret.mdata[1][2] = cosalpha*d.x*d.y - d.x*d.y;
ret.mdata[2][1] = cosalpha*d.x*d.y - d.x*d.y;
ret.mdata[2][2] = cosalpha*d.y*d.y + d.x*d.x;
ret.mIsHomothety = ret.mIsAffine = false;
return translation( t )*ret*translation( -t );
}
const Coordinate Transformation::apply( const double x0,
const double x1,
const double x2) const
{
double phom[3] = {x0, x1, x2};
double rhom[3] = {0., 0., 0.};
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
rhom[i] += mdata[i][j]*phom[j];
}
}
if (rhom[0] == 0.)
return Coordinate::invalidCoord();
return Coordinate (rhom[1]/rhom[0], rhom[2]/rhom[0]);
}
const Coordinate Transformation::apply( const Coordinate& p ) const
{
return apply( 1., p.x, p.y );
// double phom[3] = {1., p.x, p.y};
// double rhom[3] = {0., 0., 0.};
//
// for (int i = 0; i < 3; i++)
// {
// for (int j = 0; j < 3; j++)
// {
// rhom[i] += mdata[i][j]*phom[j];
// }
// }
//
// if (rhom[0] == 0.)
// return Coordinate::invalidCoord();
//
// return Coordinate (rhom[1]/rhom[0], rhom[2]/rhom[0]);
}
const Coordinate Transformation::apply0( const Coordinate& p ) const
{
return apply( 0., p.x, p.y );
}
const Transformation Transformation::rotation( double alpha, const Coordinate& center )
{
Transformation ret = identity();
double x = center.x;
double y = center.y;
double cosalpha = cos( alpha );
double sinalpha = sin( alpha );
ret.mdata[1][1] = ret.mdata[2][2] = cosalpha;
ret.mdata[1][2] = -sinalpha;
ret.mdata[2][1] = sinalpha;
ret.mdata[1][0] = x - ret.mdata[1][1]*x - ret.mdata[1][2]*y;
ret.mdata[2][0] = y - ret.mdata[2][1]*x - ret.mdata[2][2]*y;
// this is already set in the identity() constructor, but just for
// clarity..
ret.mIsHomothety = ret.mIsAffine = true;
return ret;
}
bool Transformation::isHomothetic() const
{
return mIsHomothety;
}
bool Transformation::isAffine() const
{
return mIsAffine;
}
/*
*mp:
* this function has the property that it changes sign if computed
* on two points that lie on either sides with respect to the critical
* line (this is the line that goes to the line at infinity).
* For affine transformations the result has always the same sign.
* NOTE: the result is *not* invariant under rescaling of all elements
* of the transformation matrix.
* The typical use is to determine whether a segment is transformed
* into a segment or a couple of half-lines.
*/
double Transformation::getProjectiveIndicator( const Coordinate& c ) const
{
return mdata[0][0] + mdata[0][1]*c.x + mdata[0][2]*c.y;
}
// assuming that this is an affine transformation, return its
// determinant. What is really important here is just the sign
// of the determinant.
double Transformation::getAffineDeterminant() const
{
return mdata[1][1]*mdata[2][2] - mdata[1][2]*mdata[2][1];
}
// this assumes that the 2x2 affine part of the matrix is of the
// form [ cos a, sin a; -sin a, cos a] or a multiple
double Transformation::getRotationAngle() const
{
return atan2( mdata[1][2], mdata[1][1] );
}
const Coordinate Transformation::apply2by2only( const Coordinate& p ) const
{
double x = p.x;
double y = p.y;
double nx = mdata[1][1]*x + mdata[1][2]*y;
double ny = mdata[2][1]*x + mdata[2][2]*y;
return Coordinate( nx, ny );
}
double Transformation::data( int r, int c ) const
{
return mdata[r][c];
}
const Transformation Transformation::inverse( bool& valid ) const
{
Transformation ret;
valid = Invert3by3matrix( mdata, ret.mdata );
// the inverse of a homothety is a homothety, same for affinities..
ret.mIsHomothety = mIsHomothety;
ret.mIsAffine = mIsAffine;
return ret;
}
Transformation::Transformation()
{
// this is the constructor used by the static Transformation
// creation functions, so mIsHomothety is in general false
mIsHomothety = mIsAffine = false;
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 3; ++j )
mdata[i][j] = ( i == j ) ? 1 : 0;
}
Transformation::~Transformation()
{
}
double Transformation::apply( double length ) const
{
assert( isHomothetic() );
double det = mdata[1][1]*mdata[2][2] -
mdata[1][2]*mdata[2][1];
return sqrt( fabs( det ) ) * length;
}
Transformation::Transformation( double data[3][3], bool ishomothety )
: mIsHomothety( ishomothety )
{
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 3; ++j )
mdata[i][j] = data[i][j];
//mp: a test for affinity is used to initialize mIsAffine...
mIsAffine = false;
if ( fabs(mdata[0][1]) + fabs(mdata[0][2]) < 1e-8 * fabs(mdata[0][0]) )
mIsAffine = true;
}
bool operator==( const Transformation& lhs, const Transformation& rhs )
{
for ( int i = 0; i < 3; ++i )
for ( int j = 0; j < 3; ++j )
if ( lhs.data( i, j ) != rhs.data( i, j ) )
return false;
return true;
}
const Transformation Transformation::similitude(
const Coordinate& center, double theta, double factor )
{
//kdDebug() << k_funcinfo << "theta: " << theta << " factor: " << factor << endl;
Transformation ret;
ret.mIsHomothety = true;
double costheta = cos( theta );
double sintheta = sin( theta );
ret.mdata[0][0] = 1;
ret.mdata[0][1] = 0;
ret.mdata[0][2] = 0;
ret.mdata[1][0] = ( 1 - factor*costheta )*center.x + factor*sintheta*center.y;
ret.mdata[1][1] = factor*costheta;
ret.mdata[1][2] = -factor*sintheta;
ret.mdata[2][0] = -factor*sintheta*center.x + ( 1 - factor*costheta )*center.y;
ret.mdata[2][1] = factor*sintheta;
ret.mdata[2][2] = factor*costheta;
// fails for factor == infinity
//assert( ( ret.apply( center ) - center ).length() < 1e-5 );
ret.mIsHomothety = ret.mIsAffine = true;
return ret;
}
|