summaryrefslogtreecommitdiffstats
path: root/kig/objects/conic_imp.h
blob: 55ba65ca0e9c3b95bbc00453ca4cfe16b14b3852 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// Copyright (C)  2003  Dominique Devriese <[email protected]>

// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
// 02110-1301, USA.

#ifndef KIG_OBJECTS_CONIC_IMP_H
#define KIG_OBJECTS_CONIC_IMP_H

#include "curve_imp.h"

#include "../misc/conic-common.h"

/**
 * An ObjectImp representing a conic.
 *
 * A conic is a general second degree curve, and some beautiful theory
 * has been developed about it..  See a math book for more
 * information.  This class is in fact an abstract base class hiding
 * the fact that a ConicImp can be constructed in two ways.  If only
 * its Cartesian equation is known, then you should use ConicImpCart,
 * otherwise, you should use ConicImpPolar.  If the other
 * representation is needed, it will be calculated, but a cartesian
 * representation is rarely needed, and not calculating saves some CPU
 * cycles.
 */
class ConicImp
  : public CurveImp
{
protected:
  ConicImp();
  ~ConicImp();
public:
  typedef CurveImp Parent;
  /**
   * Returns the ObjectImpType representing the ConicImp type.
   */
  static const ObjectImpType* stype();

  ObjectImp* transform( const Transformation& ) const;

  void draw( KigPainter& p ) const;
  bool contains( const Coordinate& p, int width, const KigWidget& ) const;
  bool inRect( const Rect& r, int width, const KigWidget& ) const;
  bool valid() const;
  Rect surroundingRect() const;

  const uint numberOfProperties() const;
  const ObjectImpType* impRequirementForProperty( uint which ) const;
  bool isPropertyDefinedOnOrThroughThisImp( uint which ) const;
  const QCStringList properties() const;
  const QCStringList propertiesInternalNames() const;
  const char* iconForProperty( uint which ) const;
  ObjectImp* property( uint which, const KigDocument& w ) const;

  double getParam( const Coordinate& point, const KigDocument& ) const;
  const Coordinate getPoint( double param, const KigDocument& ) const;

  // information about ourselves..  These are all virtual, because a
  // trivial subclass like CircleImp can override these with trivial
  // versions..

  /**
   * Type of conic.
   * Return what type of conic this is:
   * -1 for a hyperbola
   * 0 for a parabola
   * 1 for an ellipse
   */
  virtual int conicType() const;
  /**
   * A string containing "Hyperbola", "Parabola" or "Ellipse".
   */
  virtual QString conicTypeString() const;
  /**
   * A string containing the cartesian equation of the conic.  This
   * will be of the form "a x^2 + b y^2 + c xy + d x + e y + f = 0".
   */
  virtual QString cartesianEquationString( const KigDocument& w ) const;
  /**
   * A string containing the polar equation of the conic.  This will
   * be of the form "rho = pdimen/(1 + ect cos( theta ) + est sin(
   * theta ) )\n    [centered at p]"
   */
  virtual QString polarEquationString( const KigDocument& w ) const;
  /**
   * Return the cartesian representation of this conic.
   */
  virtual const ConicCartesianData cartesianData() const;
  /**
   * Return the polar representation of this conic.
   */
  virtual const ConicPolarData polarData() const = 0;
  /**
   * Return the first focus of this conic.
   */
  virtual Coordinate focus1() const;
  /**
   * Return the second focus of this conic.
   */
  virtual Coordinate focus2() const;

  const ObjectImpType* type() const;
  void visit( ObjectImpVisitor* vtor ) const;

  bool equals( const ObjectImp& rhs ) const;

  bool containsPoint( const Coordinate& p, const KigDocument& doc ) const;
  bool internalContainsPoint( const Coordinate& p, double threshold ) const;
};

/**
 * An implementation of ConicImp to be used when only the cartesian
 * equation of the conic is known.
 */
class ConicImpCart
  : public ConicImp
{
  ConicCartesianData mcartdata;
  ConicPolarData mpolardata;
public:
  ConicImpCart( const ConicCartesianData& data );
  ~ConicImpCart();
  ConicImpCart* copy() const;

  const ConicCartesianData cartesianData() const;
  const ConicPolarData polarData() const;
};

/**
 * An implementation of ConicImp to be used when only the cartesian
 * equation of the conic is known.
 */
class ConicImpPolar
  : public ConicImp
{
  ConicPolarData mdata;
public:
  ConicImpPolar( const ConicPolarData& data );
  ~ConicImpPolar();
  ConicImpPolar* copy() const;

  const ConicPolarData polarData() const;
};

#endif