1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
|
// Copyright (C) 2003 Dominique Devriese <[email protected]>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
// 02110-1301, USA.
#include "cubic_imp.h"
#include "bogus_imp.h"
#include "../misc/kigpainter.h"
#include "../misc/screeninfo.h"
#include "../misc/kignumerics.h"
#include "../misc/common.h"
#include "../kig/kig_view.h"
#include <math.h>
#include <klocale.h>
CubicImp::CubicImp( const CubicCartesianData& data )
: CurveImp(), mdata( data )
{
}
CubicImp::~CubicImp()
{
}
ObjectImp* CubicImp::transform( const Transformation& t ) const
{
bool valid = true;
CubicCartesianData d = calcCubicTransformation( data(), t, valid );
if ( valid ) return new CubicImp( d );
else return new InvalidImp;
}
void CubicImp::draw( KigPainter& p ) const
{
p.drawCurve( this );
}
bool CubicImp::contains( const Coordinate& o, int width, const KigWidget& w ) const
{
return internalContainsPoint( o, w.screenInfo().normalMiss( width ) );
}
bool CubicImp::inRect( const Rect&, int, const KigWidget& ) const
{
// TODO ?
return false;
}
CubicImp* CubicImp::copy() const
{
return new CubicImp( mdata );
}
double CubicImp::getParam( const Coordinate& p, const KigDocument& ) const
{
double x = p.x;
double y = p.y;
double t;
double a000 = mdata.coeffs[0];
double a001 = mdata.coeffs[1];
double a002 = mdata.coeffs[2];
double a011 = mdata.coeffs[3];
double a012 = mdata.coeffs[4];
double a022 = mdata.coeffs[5];
double a111 = mdata.coeffs[6];
double a112 = mdata.coeffs[7];
double a122 = mdata.coeffs[8];
double a222 = mdata.coeffs[9];
/*
* first project p onto the cubic. This is done by computing the
* line through p in the direction of the gradient
*/
double f = a000 + a001*x + a002*y + a011*x*x + a012*x*y + a022*y*y +
a111*x*x*x + a112*x*x*y + a122*x*y*y + a222*y*y*y;
if ( f != 0 )
{
double fx = a001 + 2*a011*x + a012*y + 3*a111*x*x + 2*a112*x*y + a122*y*y;
double fy = a002 + 2*a022*y + a012*x + 3*a222*y*y + 2*a122*x*y + a112*x*x;
Coordinate v = Coordinate (fx, fy);
if ( f < 0 ) v = -v; // the line points away from the intersection
double a, b, c, d;
calcCubicLineRestriction ( mdata, p, v, a, b, c, d );
if ( a < 0 )
{
a *= -1;
b *= -1;
c *= -1;
d *= -1;
}
// computing the coefficients of the Sturm sequence
double p1a = 2*b*b - 6*a*c;
double p1b = b*c - 9*a*d;
double p0a = c*p1a*p1a + p1b*(3*a*p1b - 2*b*p1a);
// compute the number of roots for negative lambda
int variations = calcCubicVariations ( 0, a, b, c, d, p1a, p1b, p0a );
bool valid;
int numroots;
double lambda = calcCubicRoot ( -1e10, 1e10, a, b, c, d, variations, valid,
numroots );
if ( valid )
{
Coordinate pnew = p + lambda*v;
x = pnew.x;
y = pnew.y;
}
}
if (x > 0) t = x/(1+x);
else t = x/(1-x);
t = 0.5*(t + 1);
t /= 3;
Coordinate p1 = getPoint ( t );
Coordinate p2 = getPoint ( t + 1.0/3.0 );
Coordinate p3 = getPoint ( t + 2.0/3.0 );
double mint = t;
double mindist = p1.valid() ? fabs ( y - p1.y ) : double_inf;
if ( p2.valid() && fabs ( y - p2.y ) < mindist )
{
mint = t + 1.0/3.0;
mindist = fabs ( y - p2.y );
}
if ( p3.valid() && fabs ( y - p3.y ) < mindist )
{
mint = t + 2.0/3.0;
}
return mint;
}
const Coordinate CubicImp::getPoint( double p, const KigDocument& ) const
{
return getPoint( p );
}
const Coordinate CubicImp::getPoint( double p ) const
{
/*
* this isn't really elegant...
* the magnitude of p tells which one of the maximum 3 intersections
* of the vertical line with the cubic to take.
*/
p *= 3;
int root = (int) p;
assert ( root >= 0 );
assert ( root <= 3 );
if ( root == 3 ) root = 2;
p -= root;
assert ( 0 <= p && p <= 1 );
if ( p <= 0. ) p = 1e-6;
if ( p >= 1. ) p = 1 - 1e-6;
root++;
p = 2*p - 1;
double x;
if (p > 0) x = p/(1 - p);
else x = p/(1 + p);
// calc the third degree polynomial:
// compute the third degree polinomial:
// double a000 = mdata.coeffs[0];
// double a001 = mdata.coeffs[1];
// double a002 = mdata.coeffs[2];
// double a011 = mdata.coeffs[3];
// double a012 = mdata.coeffs[4];
// double a022 = mdata.coeffs[5];
// double a111 = mdata.coeffs[6];
// double a112 = mdata.coeffs[7];
// double a122 = mdata.coeffs[8];
// double a222 = mdata.coeffs[9];
//
// // first the y^3 coefficient, it coming only from a222:
// double a = a222;
// // next the y^2 coefficient (from a122 and a022):
// double b = a122*x + a022;
// // next the y coefficient (from a112, a012 and a002):
// double c = a112*x*x + a012*x + a002;
// // finally the constant coefficient (from a111, a011, a001 and a000):
// double d = a111*x*x*x + a011*x*x + a001*x + a000;
// commented out, since the bound is already computed when passing a huge
// interval; the normalization is not needed also
// renormalize: positive a
// if ( a < 0 )
// {
// a *= -1;
// b *= -1;
// c *= -1;
// d *= -1;
// }
//
// const double small = 1e-7;
// int degree = 3;
// if ( fabs(a) < small*fabs(b) ||
// fabs(a) < small*fabs(c) ||
// fabs(a) < small*fabs(d) )
// {
// degree = 2;
// if ( fabs(b) < small*fabs(c) ||
// fabs(b) < small*fabs(d) )
// {
// degree = 1;
// }
// }
// and a bound for all the real roots:
// double bound;
// switch (degree)
// {
// case 3:
// bound = fabs(d/a);
// if ( fabs(c/a) + 1 > bound ) bound = fabs(c/a) + 1;
// if ( fabs(b/a) + 1 > bound ) bound = fabs(b/a) + 1;
// break;
//
// case 2:
// bound = fabs(d/b);
// if ( fabs(c/b) + 1 > bound ) bound = fabs(c/b) + 1;
// break;
//
// case 1:
// default:
// bound = fabs(d/c) + 1;
// break;
// }
int numroots;
bool valid = true;
double y = calcCubicYvalue ( x, -double_inf, double_inf, root, mdata, valid,
numroots );
if ( ! valid ) return Coordinate::invalidCoord();
else return Coordinate(x,y);
// if ( valid ) return Coordinate(x,y);
// root--; if ( root <= 0) root += 3;
// y = calcCubicYvalue ( x, -bound, bound, root, mdata, valid,
// numroots );
// if ( valid ) return Coordinate(x,y);
// root--; if ( root <= 0) root += 3;
// y = calcCubicYvalue ( x, -bound, bound, root, mdata, valid,
// numroots );
// assert ( valid );
// return Coordinate(x,y);
}
const uint CubicImp::numberOfProperties() const
{
return Parent::numberOfProperties() + 1;
}
const QCStringList CubicImp::propertiesInternalNames() const
{
QCStringList l = Parent::propertiesInternalNames();
l << "cartesian-equation";
assert( l.size() == CubicImp::numberOfProperties() );
return l;
}
/*
* cartesian equation property contributed by Carlo Sardi
*/
const QCStringList CubicImp::properties() const
{
QCStringList l = Parent::properties();
l << I18N_NOOP( "Cartesian Equation" );
assert( l.size() == CubicImp::numberOfProperties() );
return l;
}
const ObjectImpType* CubicImp::impRequirementForProperty( uint which ) const
{
if ( which < Parent::numberOfProperties() )
return Parent::impRequirementForProperty( which );
else return CubicImp::stype();
}
const char* CubicImp::iconForProperty( uint which ) const
{
int pnum = 0;
if ( which < Parent::numberOfProperties() )
return Parent::iconForProperty( which );
if ( which == Parent::numberOfProperties() + pnum++ )
return "kig_text"; // cartesian equation string
else
assert( false );
return "";
}
ObjectImp* CubicImp::property( uint which, const KigDocument& w ) const
{
int pnum = 0;
if ( which < Parent::numberOfProperties() )
return Parent::property( which, w );
if ( which == Parent::numberOfProperties() + pnum++ )
return new StringImp( cartesianEquationString( w ) );
else
assert( false );
return new InvalidImp;
}
const CubicCartesianData CubicImp::data() const
{
return mdata;
}
void CubicImp::visit( ObjectImpVisitor* vtor ) const
{
vtor->visit( this );
}
bool CubicImp::equals( const ObjectImp& rhs ) const
{
return rhs.inherits( CubicImp::stype() ) &&
static_cast<const CubicImp&>( rhs ).data() == data();
}
const ObjectImpType* CubicImp::type() const
{
return CubicImp::stype();
}
const ObjectImpType* CubicImp::stype()
{
static const ObjectImpType t(
Parent::stype(), "cubic",
I18N_NOOP( "cubic curve" ),
I18N_NOOP( "Select this cubic curve" ),
I18N_NOOP( "Select cubic curve %1" ),
I18N_NOOP( "Remove a Cubic Curve" ),
I18N_NOOP( "Add a Cubic Curve" ),
I18N_NOOP( "Move a Cubic Curve" ),
I18N_NOOP( "Attach to this cubic curve" ),
I18N_NOOP( "Show a Cubic Curve" ),
I18N_NOOP( "Hide a Cubic Curve" )
);
return &t;
}
bool CubicImp::containsPoint( const Coordinate& p, const KigDocument& ) const
{
return internalContainsPoint( p, test_threshold );
}
bool CubicImp::internalContainsPoint( const Coordinate& p, double threshold ) const
{
double a000 = mdata.coeffs[0];
double a001 = mdata.coeffs[1];
double a002 = mdata.coeffs[2];
double a011 = mdata.coeffs[3];
double a012 = mdata.coeffs[4];
double a022 = mdata.coeffs[5];
double a111 = mdata.coeffs[6];
double a112 = mdata.coeffs[7];
double a122 = mdata.coeffs[8];
double a222 = mdata.coeffs[9];
double x = p.x;
double y = p.y;
double f = a000 + a001*x + a002*y + a011*x*x + a012*x*y + a022*y*y +
a111*x*x*x + a112*x*x*y + a122*x*y*y + a222*y*y*y;
double fx = a001 + 2*a011*x + a012*y + 3*a111*x*x + 2*a112*x*y + a122*y*y;
double fy = a002 + a012*x + 2*a022*y + a112*x*x + 2*a122*x*y + 3*a222*y*y;
double dist = fabs(f)/(fabs(fx) + fabs(fy));
return dist <= threshold;
}
bool CubicImp::isPropertyDefinedOnOrThroughThisImp( uint which ) const
{
return Parent::isPropertyDefinedOnOrThroughThisImp( which );
}
Rect CubicImp::surroundingRect() const
{
// it's probably possible to calculate this if it exists, but for
// now we don't.
return Rect::invalidRect();
}
TQString CubicImp::cartesianEquationString( const KigDocument& ) const
{
/*
* unfortunately TQStrings.arg method is limited to %1, %9, so we cannot
* treat all 10 arguments! Let's split the equation in two parts...
* Now this ends up also in the translation machinery, is this really
* necessary? Otherwise we could do a little bit of tidy up on the
* the equation (removal of zeros, avoid " ... + -1234 x ", etc.)
*/
TQString ret = i18n( "%6 x³ + %9 y³ + %7 x²y + %8 xy² + %5 y² + %3 x² + %4 xy + %1 x + %2 y" );
ret = ret.tqarg( mdata.coeffs[1], 0, 'g', 3 );
ret = ret.tqarg( mdata.coeffs[2], 0, 'g', 3 );
ret = ret.tqarg( mdata.coeffs[3], 0, 'g', 3 );
ret = ret.tqarg( mdata.coeffs[4], 0, 'g', 3 );
ret = ret.tqarg( mdata.coeffs[5], 0, 'g', 3 );
ret = ret.tqarg( mdata.coeffs[6], 0, 'g', 3 );
ret = ret.tqarg( mdata.coeffs[7], 0, 'g', 3 );
ret = ret.tqarg( mdata.coeffs[8], 0, 'g', 3 );
ret = ret.tqarg( mdata.coeffs[9], 0, 'g', 3 );
ret.append( i18n( " + %1 = 0" ) );
ret = ret.tqarg( mdata.coeffs[0], 0, 'g', 3 );
// we should find a common place to do this...
ret.replace( "+ -", "- " );
ret.replace( "+-", "-" );
return ret;
}
|