1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
/*
* This file is part of the KDE libraries
* Copyright (C) 1999-2001 Harri Porten ([email protected])
* Copyright (C) 2001 Peter Kelly ([email protected])
* Copyright (C) 2003 Apple Computer, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "value.h"
#include "object.h"
#include "types.h"
#include "interpreter.h"
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include "internal.h"
#include "collector.h"
#include "operations.h"
#include "error_object.h"
#include "nodes.h"
#include "simple_number.h"
using namespace KJS;
// ----------------------------- ValueImp -------------------------------------
ValueImp::ValueImp() :
refcount(0),
// Tell the garbage collector that this memory block corresponds to a real object now
_flags(VI_CREATED)
{
//fprintf(stderr,"ValueImp::ValueImp %p\n",(void*)this);
}
ValueImp::~ValueImp()
{
//fprintf(stderr,"ValueImp::~ValueImp %p\n",(void*)this);
_flags |= VI_DESTRUCTED;
}
void ValueImp::mark()
{
//fprintf(stderr,"ValueImp::mark %p\n",(void*)this);
_flags |= VI_MARKED;
}
bool ValueImp::marked() const
{
// Simple numbers are always considered marked.
return SimpleNumber::is(this) || (_flags & VI_MARKED);
}
void ValueImp::setGcAllowed()
{
//fprintf(stderr,"ValueImp::setGcAllowed %p\n",(void*)this);
// simple numbers are never seen by the collector so setting this
// flag is irrelevant
if (!SimpleNumber::is(this))
_flags |= VI_GCALLOWED;
}
void* ValueImp::operator new(size_t s)
{
return Collector::allocate(s);
}
void ValueImp::operator delete(void*)
{
// Do nothing. So far.
}
bool ValueImp::toUInt32(unsigned&) const
{
return false;
}
// ECMA 9.4
int ValueImp::toInteger(ExecState *exec) const
{
unsigned i;
if (dispatchToUInt32(i))
return static_cast<int>(i);
double d = roundValue(exec, Value(const_cast<ValueImp*>(this)));
if (isInf(d))
return INT_MAX;
return static_cast<int>(d);
}
int ValueImp::toInt32(ExecState *exec) const
{
unsigned i;
if (dispatchToUInt32(i))
return (int)i;
double d = roundValue(exec, Value(const_cast<ValueImp*>(this)));
if (isNaN(d) || isInf(d) || d == 0.0)
return 0;
double d32 = fmod(d, D32);
//Make sure we use the positive remainder. This matters since this may be
//less than MIN_INT (but still < 2^32), and we don't want the cast to clamp.
if (d32 < 0)
d32 += D32;
if (d32 >= D32 / 2.0)
d32 -= D32;
return static_cast<int>(d32);
}
unsigned int ValueImp::toUInt32(ExecState *exec) const
{
unsigned i;
if (dispatchToUInt32(i))
return i;
double d = roundValue(exec, Value(const_cast<ValueImp*>(this)));
if (isNaN(d) || isInf(d) || d == 0.0)
return 0;
double d32 = fmod(d, D32);
if (d32 < 0)
d32 += D32;
//6.3.1.4 Real floating and integer
// 50) The remaindering operation performed when a value of integer type is
// converted to unsigned type need not be performed when a value of real
// floating type is converted to unsigned type. Thus, the range of
// portable real floating values is (-1, Utype_MAX+1).
return static_cast<unsigned int>(d32);
}
unsigned short ValueImp::toUInt16(ExecState *exec) const
{
unsigned i;
if (dispatchToUInt32(i))
return (unsigned short)i;
double d = roundValue(exec, Value(const_cast<ValueImp*>(this)));
double d16 = fmod(d, D16);
// look at toUInt32 to see why this is necesary
int t_int = static_cast<int>(d16);
return static_cast<unsigned short>(t_int);
}
// Dispatchers for virtual functions, to special-case simple numbers which
// won't be real pointers.
Type ValueImp::dispatchType() const
{
if (SimpleNumber::is(this))
return NumberType;
return type();
}
Value ValueImp::dispatchToPrimitive(ExecState *exec, Type preferredType) const
{
if (SimpleNumber::is(this))
return Value(const_cast<ValueImp *>(this));
return toPrimitive(exec, preferredType);
}
bool ValueImp::dispatchToBoolean(ExecState *exec) const
{
if (SimpleNumber::is(this))
return SimpleNumber::value(this);
return toBoolean(exec);
}
double ValueImp::dispatchToNumber(ExecState *exec) const
{
if (SimpleNumber::is(this))
return SimpleNumber::value(this);
return toNumber(exec);
}
UString ValueImp::dispatchToString(ExecState *exec) const
{
if (SimpleNumber::is(this))
return UString::from(SimpleNumber::value(this));
return toString(exec);
}
Object ValueImp::dispatchToObject(ExecState *exec) const
{
if (SimpleNumber::is(this))
return static_cast<const NumberImp *>(this)->NumberImp::toObject(exec);
return toObject(exec);
}
bool ValueImp::dispatchToUInt32(unsigned& result) const
{
if (SimpleNumber::is(this)) {
long i = SimpleNumber::value(this);
if (i < 0)
return false;
result = (unsigned)i;
return true;
}
return toUInt32(result);
}
// ------------------------------ Value ----------------------------------------
Value::Value(ValueImp *v)
{
rep = v;
#ifdef DEBUG_COLLECTOR
assert (!(rep && !SimpleNumber::is(rep) && *((uint32_t *)rep) == 0 ));
assert (!(rep && !SimpleNumber::is(rep) && rep->_flags & ValueImp::VI_MARKED));
#endif
if (v)
{
v->ref();
//fprintf(stderr, "Value::Value(%p) imp=%p ref=%d\n", this, rep, rep->refcount);
v->setGcAllowed();
}
}
Value::Value(const Value &v)
{
rep = v.imp();
#ifdef DEBUG_COLLECTOR
assert (!(rep && !SimpleNumber::is(rep) && *((uint32_t *)rep) == 0 ));
assert (!(rep && !SimpleNumber::is(rep) && rep->_flags & ValueImp::VI_MARKED));
#endif
if (rep)
{
rep->ref();
//fprintf(stderr, "Value::Value(%p)(copying %p) imp=%p ref=%d\n", this, &v, rep, rep->refcount);
}
}
Value::~Value()
{
if (rep)
{
rep->deref();
//fprintf(stderr, "Value::~Value(%p) imp=%p ref=%d\n", this, rep, rep->refcount);
}
}
Value& Value::operator=(const Value &v)
{
ValueImp *tmpRep = v.imp();
//Avoid the destruction of the object underneath us by
//incrementing the reference on it first
if (tmpRep) {
tmpRep->ref();
//fprintf(stderr, "Value::operator=(%p)(copying %p) imp=%p ref=%d\n", this, &v, tmpRep, tmpRep->refcount);
}
if (rep) {
rep->deref();
//fprintf(stderr, "Value::operator=(%p)(copying %p) old imp=%p ref=%d\n", this, &v, rep, rep->refcount);
}
rep = tmpRep;
return *this;
}
// ------------------------------ Undefined ------------------------------------
Undefined::Undefined() : Value(UndefinedImp::staticUndefined)
{
}
Undefined Undefined::dynamicCast(const Value &v)
{
if (!v.isValid() || v.type() != UndefinedType)
return Undefined(0);
return Undefined();
}
// ------------------------------ Null -----------------------------------------
Null::Null() : Value(NullImp::staticNull)
{
}
Null Null::dynamicCast(const Value &v)
{
if (!v.isValid() || v.type() != NullType)
return Null(0);
return Null();
}
// ------------------------------ Boolean --------------------------------------
Boolean::Boolean(bool b)
: Value(b ? BooleanImp::staticTrue : BooleanImp::staticFalse)
{
}
bool Boolean::value() const
{
assert(rep);
return ((BooleanImp*)rep)->value();
}
Boolean Boolean::dynamicCast(const Value &v)
{
if (!v.isValid() || v.type() != BooleanType)
return static_cast<BooleanImp*>(0);
return static_cast<BooleanImp*>(v.imp());
}
// ------------------------------ String ---------------------------------------
String::String(const UString &s) : Value(new StringImp(s))
{
#ifndef NDEBUG
if (s.isNull())
fprintf(stderr, "WARNING: KJS::String constructed from null string\n");
#endif
}
UString String::value() const
{
assert(rep);
return ((StringImp*)rep)->value();
}
String String::dynamicCast(const Value &v)
{
if (!v.isValid() || v.type() != StringType)
return String(0);
return String(static_cast<StringImp*>(v.imp()));
}
// ------------------------------ Number ---------------------------------------
Number::Number(int i)
: Value(SimpleNumber::fits(i) ? SimpleNumber::make(i) : new NumberImp(static_cast<double>(i))) { }
Number::Number(unsigned int u)
: Value(SimpleNumber::fits(u) ? SimpleNumber::make(u) : new NumberImp(static_cast<double>(u))) { }
Number::Number(double d)
#if defined(__alpha) && !defined(_IEEE_FP)
// check for NaN first if we werent't compiled with -mieee on Alpha
: Value(KJS::isNaN(d) ? NumberImp::staticNaN : (SimpleNumber::fits(d) ? SimpleNumber::make((long)d) : new NumberImp(d))) { }
#else
: Value(SimpleNumber::fits(d) ? SimpleNumber::make((long)d) : (KJS::isNaN(d) ? NumberImp::staticNaN : new NumberImp(d))) { }
#endif
Number::Number(long int l)
: Value(SimpleNumber::fits(l) ? SimpleNumber::make(l) : new NumberImp(static_cast<double>(l))) { }
Number::Number(long unsigned int l)
: Value(SimpleNumber::fits(l) ? SimpleNumber::make(l) : new NumberImp(static_cast<double>(l))) { }
Number Number::dynamicCast(const Value &v)
{
if (!v.isValid() || v.type() != NumberType)
return Number((NumberImp*)0);
return Number(static_cast<NumberImp*>(v.imp()));
}
double Number::value() const
{
if (SimpleNumber::is(rep))
return (double)SimpleNumber::value(rep);
assert(rep);
return ((NumberImp*)rep)->value();
}
int Number::intValue() const
{
if (SimpleNumber::is(rep))
return SimpleNumber::value(rep);
return (int)((NumberImp*)rep)->value();
}
bool Number::isNaN() const
{
return rep == NumberImp::staticNaN;
}
bool Number::isInf() const
{
if (SimpleNumber::is(rep))
return false;
return KJS::isInf(((NumberImp*)rep)->value());
}
|