1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
|
/* This file is part of the KDE libraries
Copyright (C) 1998, 1999, 2001, 2002 Daniel M. Duley <[email protected]>
(C) 1998, 1999 Christian Tibirna <[email protected]>
(C) 1998, 1999 Dirk Mueller <[email protected]>
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// $Id$
#ifndef __KIMAGE_EFFECT_H
#define __KIMAGE_EFFECT_H
#include <tdelibs_export.h>
class TQImage;
class TQSize;
class TQColor;
class TQPoint;
class TQRect;
/**
* This class includes various TQImage based graphical effects.
*
* Everything is
* static, so there is no need to create an instance of this class. You can
* just call the static methods. They are encapsulated here merely to provide
* a common namespace.
*/
class TDEFX_EXPORT KImageEffect
{
public:
/**
* This enum provides a gradient type specification
* @see KImageEffect::blend(), KImageEffect::gradient(),
* KImageEffect::unbalancedGradient()
*/
enum GradientType { VerticalGradient,
HorizontalGradient,
DiagonalGradient,
CrossDiagonalGradient,
PyramidGradient,
RectangleGradient,
PipeCrossGradient,
EllipticGradient
};
/**
* This enum provides a RGB channel specification
* @see KImageEffect::blend(), KImageEffect::channelIntensity(),
* KImageEffect::modulate()
*/
enum RGBComponent { Red, //!< Red channel
Green, //!< Green channel
Blue, //!< Blue channel
Gray, //!< Grey channel
All //!< All channels
};
/**
* This enum provides a lighting direction specification
* @see KImageEffect::hash()
*/
enum Lighting {NorthLite, //!< Lighting from the top of the image
NWLite, //!< Lighting from the top left of the image
WestLite, //!< Lighting from the left of the image
SWLite, //!< Lighting from the bottom left of the image
SouthLite, //!< Lighting from the bottom of the image
SELite, //!< Lighting from the bottom right of the image
EastLite, //!< Lighting from the right of the image
NELite //!< Lighting from the top right of the image
};
/**
* This enum provides a modulation type specification
* @see KImageEffect::modulate()
*/
enum ModulationType { Intensity, //!< Modulate image intensity
Saturation, //!< Modulate image saturation
HueShift, //!< Modulate image hue
Contrast //!< Modulate image contrast
};
/**
* This enum provides a noise type specification
* @see KImageEffect::addNoise()
*/
enum NoiseType { UniformNoise=0, //!< Uniform distribution
GaussianNoise, //!< Gaussian distribution
MultiplicativeGaussianNoise, //!< Multiplicative Gaussian distribution
ImpulseNoise, //!< Impulse distribution
LaplacianNoise, //!< Laplacian distribution
PoissonNoise //!< Poisson distribution
};
/**
* This enum provides a rotation specification.
* @see KImageEffect::rotate()
*/
enum RotateDirection{ Rotate90, //!< Rotate 90 degrees to the right.
Rotate180, //!< Rotate 180 degrees.
Rotate270 //!< Rotate 90 degrees to the left.
};
/**
* This enum lists possible bumpmapping implementations.
* @see KImageEffect::bumpmap()
*/
enum BumpmapType {
Linear,
Spherical,
Sinuosidal
};
/**
* Create a gradient from color a to color b of the specified type.
*
* @param size The desired size of the gradient.
* @param ca Color a
* @param cb Color b
* @param type The type of gradient.
* @param ncols The number of colors to use when not running on a
* truecolor display. The gradient will be dithered to this number of
* colors. Pass 0 to prevent dithering.
*/
static TQImage gradient(const TQSize &size, const TQColor &ca,
const TQColor &cb, GradientType type, int ncols=3);
/**
* Create an unbalanced gradient.
*
* An unbalanced gradient is a gradient where the transition from
* color a to color b is not linear, but in this case, exponential.
*
* @param size The desired size of the gradient.
* @param ca Color a
* @param cb Color b
* @param type The type of gradient.
* @param xfactor The x decay length. Use a value between -200 and 200.
* @param yfactor The y decay length.
* @param ncols The number of colors. See KImageEffect:gradient.
*/
static TQImage unbalancedGradient(const TQSize &size, const TQColor &ca,
const TQColor &cb, GradientType type, int xfactor = 100,
int yfactor = 100, int ncols = 3);
/**
* Blends a color into the destination image, using an opacity
* value for blending one into another. Very fast direct pixel
* manipulation is used.
*
* This function uses MMX and SSE2 instructions to blend the
* image on processors that support it.
*
* @param clr source color to be blended into the destination image.
* @param dst destination image in which the source will be blended into.
* @param opacity opacity (between 0.0 and 1.0) which determines how much
* the source color will be blended into the destination image.
* @return The destination image (dst) containing the result.
* @author Karol Szwed ([email protected])
* @author Fredrik Höglund ([email protected])
*/
static TQImage& blend(const TQColor& clr, TQImage& dst, float opacity);
/**
* Blend the src image into the destination image, using an opacity
* value for blending one into another. Very fast direct pixel
* manipulation is used.
*
* This function uses MMX and SSE2 instructions to blend the
* images on processors that support it.
*
* @param src source image to be blended into the destination image.
* @param dst destination image in which the source will be blended into.
* @param opacity opacity (between 0.0 and 1.0) which determines how much
* the source image will be blended into the destination image.
* @return The destination image (dst) containing the result.
* @author Karol Szwed ([email protected])
* @author Fredrik Höglund ([email protected])
*/
static TQImage& blend(TQImage& src, TQImage& dst, float opacity);
/**
* Blend the provided image into a background of the indicated color.
*
* @param initial_intensity this parameter takes values from -1 to 1:
* a) if positive: how much to fade the image in its
* less affected spot
* b) if negative: roughly indicates how much of the image
* remains unaffected
* @param bgnd indicates the color of the background to blend in
* @param eff lets you choose what kind of blending you like
* @param anti_dir blend in the opposite direction (makes no much sense
* with concentric blending effects)
* @param image must be 32bpp
*/
static TQImage& blend(TQImage &image, float initial_intensity,
const TQColor &bgnd, GradientType eff,
bool anti_dir=false);
/**
* Blend an image into another one, using a gradient type
* for blending from one to another.
*
* @param image1 source1 and result of blending
* @param image2 source2 of blending
* @param gt gradient type for blending between source1 and source2
* @param xf x decay length for unbalanced gradient tpye
* @param yf y decay length for unbalanced gradient tpye
*/
static TQImage& blend(TQImage &image1,TQImage &image2,
GradientType gt, int xf=100, int yf=100);
/**
* Blend an image into another one, using a color channel of a
* third image for the decision of blending from one to another.
*
* @param image1 Source 1 and result of blending
* @param image2 Source 2 of blending
* @param blendImage If the gray value of of pixel is 0, the result
* for this pixel is that of image1; for a gray value
* of 1, the pixel of image2 is used; for a value
* in between, a corresponding blending is used.
* @param channel The RBG channel to use for the blending decision.
*/
static TQImage& blend(TQImage &image1, TQImage &image2,
TQImage &blendImage, RGBComponent channel);
/**
* Blend an image into another one, using alpha in the expected way.
* @param upper the "upper" image
* @param lower the "lower" image
* @param output the target image
* @author Rik Hemsley (rikkus) <[email protected]>
*/
static bool blend(const TQImage & upper, const TQImage & lower, TQImage & output);
// Not yet... static bool blend(const TQImage & image1, const TQImage & image2, TQImage & output, const TQRect & destRect);
/**
* Blend an image into another one, using alpha in the expected way and
* over coordinates @p x and @p y with respect to the lower image.
* The output is a TQImage which is the @p upper image already blended
* with the @p lower one, so its size will be (in general) the same than
* @p upper instead of the same size than @p lower like the method above.
* In fact, the size of @p output is like upper's one only when it can be
* painted on lower, if there has to be some clipping, output's size will
* be the clipped area and x and y will be set to the correct up-left corner
* where the clipped rectangle begins.
* @param x x-coordinate of lower image
* @param y y-coordinate of lower image
* @param upper the "upper" image
* @param lower the "lower" image
* @param output the target image
*/
static bool blend(int &x, int &y, const TQImage & upper, const TQImage & lower, TQImage & output);
/**
* Blend an image into another one, using alpha in the expected way and
* over coordinates @p x and @p y with respect to the lower image.
* The output is painted in the own @p lower image. This is an optimization
* of the blend method above provided by convenience.
* @param x x-coordinate of lower image
* @param y y-coordinate of lower image
* @param upper the "upper" image
* @param lower the "lower" image, which becomes the output image
*/
static bool blendOnLower(int x, int y, const TQImage & upper, const TQImage & lower);
/**
* Blend part of an image into part of another, using the alpha channel in
* the expected way.
* Note that the destination rectangle will be correctly clipped.
*
* @param upper the "upper" image
* @param upperOffset Offset for the part of the upper image to be used.
* @param lower the "lower" image
* @param lowerRect Rectangle for the part of the lower image where the
* blending will occur.
* @since 3.2
*/
static void blendOnLower(const TQImage &upper, const TQPoint &upperOffset,
TQImage &lower, const TQRect &lowerRect);
/**
* Blend part of an image into part of another, using the opacity value
* and the alpha channel in the expected way.
* Note that the destination rectangle will be correctly clipped.
*
* @param upper the "upper" image
* @param upperOffset Offset for the part of the upper image to be used.
* @param lower the "lower" image
* @param lowerRect Rectangle for the part of the lower image where the
* blending will occur.
* @param opacity Opacity (between 0.0 and 1.0) which determines how much
* the source image will be blended into the destination image.
* @since 3.2
*/
static void blendOnLower(const TQImage &upper, const TQPoint &upperOffset,
TQImage &lower, const TQRect &lowerRect, float opacity);
/**
* Disposition of a source image on top of a destination image.
* @see KImageEffect::computeDestinationRect, KImageEffect::blendOnLower
* @since 3.2
*/
enum Disposition { NoImage = 0, //!< Don't overlay
Centered, //!< Center top image on botton image
Tiled, //!< Tile top image on bottom image
CenterTiled, //!< Center and tile top image on bottom image
CenteredMaxpect, //!< Center and scale aspect
TiledMaxpect, //!< Tile and scale aspect
Scaled, //!< Scale
CenteredAutoFit //!< Center and scale or scale aspect
};
/**
* Compute the destination rectangle where to draw the upper image on top
* of another image using the given disposition. For tiled
* disposition, the rectangle should be duplicated on the whole area to
* obtained the wanted effect.
*
* @param lowerSize The size of the destination image.
* @param disposition The wanted disposition.
* @param upper The upper image. Note that this image may be scaled to
* adjust to the requested disposition.
*
* @return the computed rectangle. Its size may exceed @e lowerSize.
* @since 3.2
*/
static TQRect computeDestinationRect(const TQSize &lowerSize,
Disposition disposition, TQImage &upper);
/**
* Blend an image on top of another using a given disposition and a given
* opacity. The alpha channel of the upper image is used in the expected
* way. Beware the upper image may be modified.
* @since 3.2
*/
static void blendOnLower(TQImage &upper, TQImage &lower,
Disposition disposition, float opacity);
/**
* Modifies the intensity of a pixmap's RGB channel component.
*
* @param image The TQImage to process.
* @param percent Percent value. Use a negative value to dim.
* @param channel Which channel(s) should be modified
* @return The @p image, provided for convenience.
* @author Daniel M. Duley (mosfet)
*/
static TQImage& channelIntensity(TQImage &image, float percent,
RGBComponent channel);
/**
* Fade an image to a certain background color.
*
* The number of colors will not be changed.
*
* @param image The TQImage to process.
* @param val The strength of the effect. 0 <= val <= 1.
* @param color The background color.
* @return Returns the image(), provided for convenience.
*/
static TQImage& fade(TQImage &image, float val, const TQColor &color);
/**
* This recolors a pixmap. The most dark color will become color a,
* the most bright one color b, and in between.
*
* @param image A TQImage to process.
* @param ca Color a
* @param cb Color b
* @param ncols The number of colors to dither the image to.
* Pass 0 to prevent dithering.
*/
static TQImage& flatten(TQImage &image, const TQColor &ca,
const TQColor &cb, int ncols=0);
/**
* Build a hash on any given QImage
*
* @param image The TQImage to process
* @param lite The hash faces the indicated lighting (cardinal poles).
* @param spacing How many unmodified pixels in between hashes.
* @return Returns the image(), provided for convenience.
*/
static TQImage& hash(TQImage &image, Lighting lite=NorthLite,
unsigned int spacing=0);
/**
* Either brighten or dim the image by a specified percent.
* For example, .50 will modify the colors by 50%.
*
* This function uses MMX instructions to process the image
* on processors that support it.
*
* @param image The TQImage to process.
* @param percent The percent value. Use a negative value to dim.
* @return Returns The image(), provided for convenience.
* @author Daniel M. Duley (mosfet)
* @author Benjamin Roe ([email protected])
*/
static TQImage& intensity(TQImage &image, float percent);
/**
* Modulate the image with a color channel of another image.
*
* @param image The TQImage to modulate and result.
* @param modImage The TQImage to use for modulation.
* @param reverse Invert the meaning of image/modImage; result is image!
* @param type The modulation Type to use.
* @param factor The modulation amplitude; with 0 no effect [-200;200].
* @param channel The RBG channel of image2 to use for modulation.
* @return Returns the image(), provided for convenience.
*/
static TQImage& modulate(TQImage &image, TQImage &modImage, bool reverse,
ModulationType type, int factor, RGBComponent channel);
/**
* Convert an image to grayscale.
*
* @param image The TQImage to process.
* @param fast Set to @p true in order to use a faster but non-photographic
* quality algorithm. Appropriate for things such as toolbar icons.
* @return Returns the image(), provided for convenience.
* @author Daniel M. Duley (mosfet)
*/
static TQImage& toGray(TQImage &image, bool fast = false);
/**
* Desaturate an image evenly.
*
* @param image The TQImage to process.
* @param desat A value between 0 and 1 setting the degree of desaturation
* @return Returns the image(), provided for convenience.
*/
static TQImage& desaturate(TQImage &image, float desat = 0.3);
/**
* Fast, but low quality contrast of an image. Also see contrastHSV.
*
* @param image The TQImage to process.
* @param c A contrast value between -255 to 255.
* @return The image(), provided for convenience.
* @author Daniel M. Duley (mosfet)
* ### KDE 4: remove
*/
static TQImage& contrast(TQImage &image, int c);
/**
* Dither an image using Floyd-Steinberg dithering for low-color
* situations.
*
* @param image The TQImage to process.
* @param palette The color palette to use
* @param size The size of the palette
* @return Returns the image(), provided for convenience.
*/
static TQImage& dither(TQImage &image, const TQColor *palette, int size);
/**
* Calculate the image for a selected image, for instance a selected icon
* on the desktop.
* @param img the TQImage to select
* @param col the selected color, usually from TQColorGroup::highlight().
*/
static TQImage& selectedImage( TQImage &img, const TQColor &col );
/**
* High quality, expensive HSV contrast. You can do a faster one by just
* taking a intensity threshold (ie: 128) and incrementing RGB color
* channels above it and decrementing those below it, but this gives much
* better results.
*
* @param img The TQImage to process.
* @param sharpen If true sharpness is increase, (spiffed). Otherwise
* it is decreased, (dulled).
* @author Daniel M. Duley (mosfet)
*/
static void contrastHSV(TQImage &img, bool sharpen=true);
/**
* Normalises the pixel values to span the full range of color values.
* This is a contrast enhancement technique.
* @param img the image that is normalised
* @author Daniel M. Duley (mosfet)
*/
static void normalize(TQImage &img);
/**
* Performs histogram equalisation on the reference
* image.
* @param img the image that is equalised
* @author Daniel M. Duley (mosfet)
*/
static void equalize(TQImage &img);
/**
* Thresholds the reference image. You can also threshold images by using
* ThresholdDither in the various QPixmap/TQImage convert methods, but this
* lets you specify a threshold value.
*
* @param img The TQImage to process.
* @param value The threshold value.
* @author Daniel M. Duley (mosfet)
*/
static void threshold(TQImage &img, unsigned int value=128);
/**
* Produces a 'solarization' effect seen when exposing a photographic
* film to light during the development process.
*
* @param img The TQImage to process.
* @param factor The extent of the solarization (0-99.9)
* @author Daniel M. Duley (mosfet)
*/
static void solarize(TQImage &img, double factor=50.0);
/**
* Embosses the source image. This involves highlighting the edges
* and applying various other enhancements in order to get a metal
* effect.
*
* @param src The TQImage to process.
* @param radius The radius of the gaussian not counting the
* center pixel. Use 0 and a suitable radius will be automatically used.
* @param sigma The standard deviation of the gaussian. Use 1 if you're not
* sure.
* @return The embossed image. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage emboss(TQImage &src, double radius, double sigma);
/**
* Convenience method.
*/
static TQImage emboss(TQImage &src);
/**
* Minimizes speckle noise in the source image using the 8 hull
* algorithm.
*
* @param src The TQImage to process.
* @return The despeckled image. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage despeckle(TQImage &src);
/**
* Produces a neat little "charcoal" effect.
*
* @param src The TQImage to process.
* @param radius The radius of the gaussian not counting the
* center pixel. Use 0 and a suitable radius will be automatically used.
* @param sigma The standard deviation of the gaussian. Use 1 if you're not
* sure.
* @return The charcoal image. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage charcoal(TQImage &src, double radius, double sigma);
/**
* This is provided for binary compatability only! Use the above method
* with a radius and sigma instead!
*/
static TQImage charcoal(TQImage &src, double factor=50.0);
/**
* Rotates the image by the specified amount
*
* @param src The TQImage to process.
* @param r The rotate direction.
* @return The rotated image. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage rotate(TQImage &src, RotateDirection r);
/**
* Scales an image using simple pixel sampling. This does not produce
* nearly as nice a result as TQImage::smoothScale(), but has the
* advantage of being much faster - only a few milliseconds.
*
* @param src The TQImage to process.
* @param w The new width.
* @param h The new height.
* @return The scaled image. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage sample(TQImage &src, int w, int h);
/**
* Adds noise to an image.
*
* @param src The TQImage to process.
* @param type The algorithm used to generate the noise.
* @return The image with noise added. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage addNoise(TQImage &src, NoiseType type = GaussianNoise);
/**
* Blurs an image by convolving pixel neighborhoods.
*
* @param src The TQImage to process.
* @param radius The radius of the gaussian not counting the
* center pixel. Use 0 and a suitable radius will be automatically used.
* @param sigma The standard deviation of the gaussian. Use 1 if you're not
* sure.
* @return The blurred image. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage blur(TQImage &src, double radius, double sigma);
/**
* This is provided for binary compatability only! Use the above method
* with a radius and sigma instead!
*/
static TQImage blur(TQImage &src, double factor=50.0);
/**
* Detects edges in an image using pixel neighborhoods and an edge
* detection mask.
*
* @param src The TQImage to process.
* @param radius The radius of the gaussian not counting the
* center pixel. Use 0 and a suitable radius will be automatically used.
* @return The image with edges detected. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage edge(TQImage &src, double radius);
/**
* Implodes an image by a specified percent.
*
* @param src The TQImage to process.
* @param factor The extent of the implosion.
* @param background An RGBA value to use for the background. After the
* effect some pixels may be "empty". This value is used for those pixels.
* @return The imploded image. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage implode(TQImage &src, double factor=30.0,
unsigned int background = 0xFFFFFFFF);
/**
* Produces an oil painting effect.
*
* @param src The TQImage to process.
* @param radius The radius of the gaussian not counting the
* center pixel. Use 0 and a suitable radius will be automatically used.
* @return The new image. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage oilPaintConvolve(TQImage &src, double radius);
/**
* This is provided for binary compatability only! Use the above method
* instead!
*/
static TQImage oilPaint(TQImage &src, int radius=3);
/**
* Sharpens the pixels in the image using pixel neighborhoods.
*
* @param src The TQImage to process.
* @param radius The radius of the gaussian not counting the
* center pixel. Use 0 and a suitable radius will be automatically used.
* @param sigma The standard deviation of the gaussian. Use 1 if you're not
* sure.
* @return The sharpened image. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage sharpen(TQImage &src, double radius, double sigma);
/**
* This is provided for binary compatability only! Use the above method
* instead!
*/
static TQImage sharpen(TQImage &src, double factor=30.0);
/**
* Randomly displaces pixels.
*
* @param src The TQImage to process.
* @param amount The vicinity for choosing a random pixel to swap.
* @return The image with pixels displaced. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage spread(TQImage &src, unsigned int amount=3);
/**
* Shades the image using a distance light source.
*
* @param src The TQImage to process.
* @param color_shading If true do color shading, otherwise do grayscale.
* @param azimuth Determines the light source and direction.
* @param elevation Determines the light source and direction.
* @return The shaded image. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage shade(TQImage &src, bool color_shading=true, double azimuth=30.0,
double elevation=30.0);
/**
* Swirls the image by a specified amount
*
* @param src The TQImage to process.
* @param degrees The tightness of the swirl.
* @param background An RGBA value to use for the background. After the
* effect some pixels may be "empty". This value is used for those pixels.
* @return The swirled image. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage swirl(TQImage &src, double degrees=50.0, unsigned int background =
0xFFFFFFFF);
/**
* Modifies the pixels along a sine wave.
*
* @param src The TQImage to process.
* @param amplitude The amplitude of the sine wave.
* @param frequency The frequency of the sine wave.
* @param background An RGBA value to use for the background. After the
* effect some pixels may be "empty". This value is used for those pixels.
* @return The new image. The original is not changed.
* @author Daniel M. Duley (mosfet)
*/
static TQImage wave(TQImage &src, double amplitude=25.0, double frequency=150.0,
unsigned int background = 0xFFFFFFFF);
/**
* A bumpmapping algorithm.
*
* @param img the image you want bumpmap
* @param map the map used
* @param azimuth azimuth
* @param elevation elevation
* @param depth depth (not the depth of the image, but of the map)
* @param xofs X offset
* @param yofs Y offset
* @param waterlevel level that full transparency should represent
* @param ambient ambient lighting factor
* @param compensate compensate for darkening
* @param invert invert bumpmap
* @param type type of the bumpmap
* @param tiled tile the bumpmap over the image through the Y offset
*
* @return The destination image (dst) containing the result.
* @author Zack Rusin <[email protected]>
*/
static TQImage bumpmap(TQImage &img, TQImage &map, double azimuth, double elevation,
int depth, int xofs, int yofs, int waterlevel,
int ambient, bool compensate, bool invert,
BumpmapType type, bool tiled);
/**
* Convert an image with standard alpha to premultiplied alpha
*
* @param img the image you want convert
*
* @return The destination image (dst) containing the result.
* @author Timothy Pearson <[email protected]>
*/
static TQImage convertToPremultipliedAlpha(TQImage input);
private:
/**
* Helper function to fast calc some altered (lighten, shaded) colors
*
*/
static unsigned int lHash(unsigned int c);
static unsigned int uHash(unsigned int c);
/**
* Helper function to find the nearest color to the RBG triplet
*/
static int nearestColor( int r, int g, int b, const TQColor *pal, int size );
static void hull(const int x_offset, const int y_offset, const int polarity,
const int width, const int height,
unsigned int *f, unsigned int *g);
static unsigned int generateNoise(unsigned int pixel, NoiseType type);
static unsigned int interpolateColor(TQImage *image, double x, double y,
unsigned int background);
/* Various convolve routines */
static int getOptimalKernelWidth(double radius, double sigma);
static bool convolveImage(TQImage *image, TQImage *dest,
const unsigned int order,
const double *kernel);
static void blurScanLine(double *kernel, int width,
unsigned int *src, unsigned int *dest,
int columns);
static int getBlurKernel(int width, double sigma, double **kernel);
};
#endif
|