1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
/*
* Copyright (C) 2002 Michael Zuercher
* [email protected]
*
* Based on an algorithm by Stephan M. Sprenger, http://www.dspdimension.com
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#include "artsmodulessynth.h"
#include "stdsynthmodule.h"
#include <stdio.h> //debug only
#include <arts/fft.h>
#include <string.h>
#include <math.h>
#define MAX(a,b) (((a) > (b) ? (a) : (b)))
#define MIN(a,b) (((a) < (b) ? (a) : (b)))
using namespace Arts;
class Synth_PITCH_SHIFT_FFT_impl : virtual public Synth_PITCH_SHIFT_FFT_skel,
virtual public StdSynthModule
{
private:
struct fftBin
{
float magnitude;
float frequency;
float phase;
};
bool addPi;
/* the attributes (gui changeable) */
/* these can happen on the fly */
float _scaleFactor, _speed;
/* these require calling setStreamOpts() */
unsigned int _frameSize, _oversample;
/* the buffers */
float *inBuffer, *outBuffer; /* circular buffers (float) */
float *windowedData; /* windowed and unrolled buffer (float) */
fftBin *analysisBuf, *synthesisBuf; /* workspaces (fftBin) */
float *real, *imag; /* place for the FFT to output */
float *windowCoeffient;
float *scratch; /* used to store imag IFFT results that we don't need */
float *phaseDiff;
/* variables to keep us in the right place of the buffers */
unsigned long bufferOffset;
/* stream not yet ready to go until we have prerolled this many windows */
unsigned int initStepsRemaining;
/* some commonly used variables */
unsigned long stepSize;
double expectedPhaseDiff;
double freqPerBin;
/* Helper functions */
void inWindow(float windowedData[], const float *inBuffer, const unsigned int basePopPoint);
void analysis(fftBin analysisBuf[], const float real[]);
void pitchScale(fftBin synthesisBuf[], const fftBin analysisBuf[]);
void synthesis(float windowedData[], fftBin synthesisBuf[]);
void outWindow(float *outBuffer, const unsigned int basePushPoint, const float windowedData[]);
public:
/* functions for the plugin interface */
float speed() { return _speed; }
void speed(float newSpeed) { _speed = newSpeed; }
float scaleFactor() { return _scaleFactor; }
void scaleFactor(float newScaleFactor) { _scaleFactor = newScaleFactor; }
long frameSize() { return (long)_frameSize; }
void frameSize(long newFrameSize)
{
setStreamOpts(newFrameSize, _oversample);
}
long oversample() { return (long)_oversample; }
void oversample(long newOversample)
{
setStreamOpts(_frameSize, newOversample);
}
/* gets called by arts when it needs more data */
void calculateBlock(unsigned long samples);
void streamInit()
{
inBuffer = outBuffer = NULL;
analysisBuf = synthesisBuf = NULL;
real = imag = NULL;
windowedData = NULL;
windowCoeffient = NULL;
scratch = NULL;
phaseDiff = NULL;
/* setup default stream parameters */
_speed = 1.0;
_scaleFactor = 0.9;
setStreamOpts(4096,2);
addPi = false;
}
void streamEnd()
{
/* clean up buffers */
delete [] inBuffer;
delete [] outBuffer;
delete [] windowedData;
delete [] analysisBuf;
delete [] synthesisBuf;
delete [] real;
delete [] imag;
delete [] windowCoeffient;
delete [] scratch;
delete [] phaseDiff;
}
void setStreamOpts(unsigned int frameSize, unsigned int oversample)
{
/* clear any buffers left around */
delete [] inBuffer;
delete [] outBuffer;
delete [] windowedData;
delete [] analysisBuf;
delete [] synthesisBuf;
delete [] real;
delete [] imag;
delete [] windowCoeffient;
delete [] scratch;
delete [] phaseDiff;
_frameSize = frameSize;
_oversample = oversample;
/* create the buffers */
inBuffer = new float[_frameSize];
outBuffer = new float[_frameSize];
windowedData = new float[_frameSize];
analysisBuf = new fftBin[_frameSize];
synthesisBuf = new fftBin[_frameSize];
real = new float[_frameSize];
imag = new float[_frameSize];
windowCoeffient = new float[_frameSize];
scratch = new float[_frameSize];
phaseDiff = new float[_oversample];
/* set up the windowing coeffients */
for(unsigned int sample=0; sample < _frameSize; sample++)
{
windowCoeffient[sample] = -0.5*cos(2.0*M_PI*(double)sample/(double)_frameSize)+0.5;
}
/* we should start at the beginning of the buffers */
bufferOffset = 0;
/* stream not yet ready to go until we have prerolled this many windows */
initStepsRemaining = _oversample;
/* calculate some commonly used variables */
stepSize = _frameSize / _oversample;
expectedPhaseDiff = 2*M_PI*(double)stepSize/(double)_frameSize;
freqPerBin = samplingRate/(double)_frameSize;
for(unsigned int bin=0; bin < _oversample; bin++)
{
phaseDiff[bin] = bin*expectedPhaseDiff;
}
memset(outBuffer, 0 ,stepSize * sizeof(float)); /* clear the first part of the output accumulator */
memset(analysisBuf, 0 ,_frameSize * sizeof(fftBin));
memset(synthesisBuf, 0 ,_frameSize * sizeof(fftBin));
}
};
void Synth_PITCH_SHIFT_FFT_impl::calculateBlock(unsigned long samples)
{
unsigned long samplesRemaining = samples;
/* pointers to the arts streams */
float *inData = inStream;
float *outData = outStream;
while(samplesRemaining > 0)
{
/* either fill the next window, or take all we have */
int samplesThisPass = MIN(samplesRemaining,stepSize - (bufferOffset % stepSize));
/* copy the incoming data into the buffer */
memcpy(inBuffer + bufferOffset, inData, samplesThisPass * sizeof(float));
/* set inData to data we haven't already taken */
inData += samplesThisPass;
if((bufferOffset+samplesThisPass) % stepSize)
{
/* if we still have only a partial window (input is still in the
* middle of a window), we can't run it yet, but we have leftover
* output we can use */
}
else
{
/* round down the the nearest stepSize, and this window is full */
if(initStepsRemaining > 0) /* we need to have enough old data for a full block too */
{
initStepsRemaining--; /* one less step to fill before we can start for real */
}
else
{
unsigned int stepOffset = (bufferOffset + samplesThisPass) - stepSize;
/* now we have a complete block (not still filling at init) to add the
* new complete window on to */
/* ############################ prepare one stepSize ########################### */
inWindow(windowedData,inBuffer,stepOffset);
analysis(analysisBuf,windowedData);
pitchScale(synthesisBuf,analysisBuf);
synthesis(windowedData,synthesisBuf);
outWindow(outBuffer,bufferOffset,windowedData);
/* ############################################################################# */
}
}
memcpy(outData, outBuffer + bufferOffset, samplesThisPass * sizeof(float));
outData += samplesThisPass;
memset(outBuffer + bufferOffset, 0 ,samplesThisPass * sizeof(float)); /* clear the output space that we have used */
bufferOffset += samplesThisPass;
bufferOffset %= _frameSize; /* wrap if needed before the next frame starts */
samplesRemaining -= samplesThisPass;
}
}
void Synth_PITCH_SHIFT_FFT_impl::inWindow(float windowedData[], const float *inBuffer, const unsigned int basePopPoint)
{
unsigned int sample;
for(sample=0; sample < _frameSize-basePopPoint; sample++)
{
/* window the data and unroll the buffers */
windowedData[sample] = inBuffer[basePopPoint + sample] * windowCoeffient[sample];
}
for(; sample < _frameSize; sample++)
{
/* window the data and unroll the buffers */
windowedData[sample] = inBuffer[(basePopPoint + sample) - _frameSize] * windowCoeffient[sample];
}
}
void Synth_PITCH_SHIFT_FFT_impl::analysis(fftBin analysisBuf[], const float windowedData[])
{
float lastPhase;
float phaseDrift;
/* do forward FFT */
/* const_cast because arts_fft_float is silly */
arts_fft_float(_frameSize, 0, const_cast<float *>(windowedData), NULL, real, imag);
/* the actual analysis loop */
for(unsigned int bin=0; bin < _frameSize/2; bin++)
{
lastPhase = analysisBuf[bin].phase;
/* compute magnitude and phase */
analysisBuf[bin].magnitude = 2.0 * sqrt(real[bin]*real[bin] + imag[bin]*imag[bin]);
analysisBuf[bin].phase = atan2(imag[bin],real[bin]);
/* compute phase difference and subtract expected phase difference */
phaseDrift = (analysisBuf[bin].phase - lastPhase) - float(phaseDiff[bin % _oversample]);
/* we now need to map it into the +/- Pi interval */
while(phaseDrift < -M_PI)
phaseDrift += 2*M_PI;
while(phaseDrift > M_PI)
phaseDrift -= 2*M_PI;
/* compute true frequency */
analysisBuf[bin].frequency = (bin + ((phaseDrift * _oversample) / (2*M_PI)))*freqPerBin;
//analysisBuf[bin].frequency = (bin + (phaseDrift/(2*M_PI)))*freqPerBin;
}
}
void Synth_PITCH_SHIFT_FFT_impl::pitchScale(fftBin synthesisBuf[], const fftBin analysisBuf[])
{
unsigned int sourceBin;
for(unsigned int destBin=0; destBin < _frameSize/2; destBin++)
{
sourceBin = (unsigned int)floor(destBin/_scaleFactor);
if(sourceBin < _frameSize/2)
{
/* new bin overrides existing if magnitude is higher */
//if(analysisBuf[sourceBin].magnitude > synthesisBuf[destBin].magnitude)
//{
synthesisBuf[destBin].magnitude = analysisBuf[sourceBin].magnitude;
synthesisBuf[destBin].frequency = analysisBuf[sourceBin].frequency * _scaleFactor;
//}
#if 0
/* fill empty bins with nearest neighbor */
if((synthesisBuf[destBin].frequency == 0.0) && (destBin > 0))
{
cerr << "Empty bins\n";
synthesisBuf[destBin].frequency = synthesisBuf[destBin-1].frequency;
synthesisBuf[destBin].magnitude = synthesisBuf[destBin-1].magnitude;
}
#endif
}
else
{
synthesisBuf[destBin].magnitude = 0;
}
}
#if 0
for(unsigned int destBin=0; destBin < _frameSize/2; destBin++)
{
synthesisBuf[destBin].magnitude = analysisBuf[destBin].magnitude;
synthesisBuf[destBin].frequency = analysisBuf[destBin].frequency;
}
#endif
}
void Synth_PITCH_SHIFT_FFT_impl::synthesis(float windowedData[], fftBin synthesisBuf[])
{
double phaseDrift;
#if 0
double test;
if(addPi == true)
test = -M_PI;
else
test = 0;
#endif
for(unsigned int bin=0;bin < _frameSize/2; bin++)
{
/* deviation of this bin's phase from one exactly at the true bin frequency */
//phaseDrift = (((synthesisBuf[bin].frequency - bin*freqPerBin)/ freqPerBin)*(2*M_PI))/_oversample;
phaseDrift = (synthesisBuf[bin].frequency / freqPerBin - bin)*(2*M_PI)/_oversample;
//phaseDrift = 0;
/* calculate the real and imag data */
real[bin] = synthesisBuf[bin].magnitude * cos(synthesisBuf[bin].phase);
imag[bin] = synthesisBuf[bin].magnitude * sin(synthesisBuf[bin].phase);
/* accumulate current phase for this wave */
synthesisBuf[bin].phase += (phaseDrift + phaseDiff[bin % _oversample]);
//synthesisBuf[bin].phase += (phaseDrift + phaseDiff[bin % _oversample] + test);
/* keep it so that -M_PI < phase < M_PI */
while(synthesisBuf[bin].phase > M_PI)
synthesisBuf[bin].phase -= 2*M_PI;
while(synthesisBuf[bin].phase <= -M_PI)
synthesisBuf[bin].phase += 2*M_PI;
#if 0
//this needs to happen so that that 'strongest wave' picking in pitchScale works
//but this isn't really the right place to do it
synthesisBuf[bin].magnitude = 0;
synthesisBuf[bin].frequency = 0;
#endif
}
/* zero the conjugate numbers */
for(unsigned int i = _frameSize/2; i < _frameSize; i++)
{
real[i] = 0.0;
imag[i] = 0.0;
}
#if 0
if(addPi == false)
addPi = true;
else
addPi = false;
#endif
/* do the inverse transform */
arts_fft_float(_frameSize, 1, real, imag, windowedData, scratch);
}
void Synth_PITCH_SHIFT_FFT_impl::outWindow(float *outBuffer, const unsigned int basePushPoint, const float windowedData[])
{
unsigned int sample;
for(sample=0; sample < _frameSize - basePushPoint; sample++)
{
/* window the data and accumulate it back into the circular buffer */
outBuffer[sample+basePushPoint] += 2.0 * windowCoeffient[sample] * windowedData[sample]/(_oversample);
}
for(; sample < _frameSize; sample++)
{
/* window the data and accumulate it back into the circular buffer */
outBuffer[(sample+basePushPoint) - _frameSize] += 2.0 * windowCoeffient[sample] * windowedData[sample]/(_oversample);
}
}
REGISTER_IMPLEMENTATION(Synth_PITCH_SHIFT_FFT_impl);
|