diff options
Diffstat (limited to 'kopete/plugins/statistics/sqlite/vdbeaux.c')
-rw-r--r-- | kopete/plugins/statistics/sqlite/vdbeaux.c | 1806 |
1 files changed, 0 insertions, 1806 deletions
diff --git a/kopete/plugins/statistics/sqlite/vdbeaux.c b/kopete/plugins/statistics/sqlite/vdbeaux.c deleted file mode 100644 index fa9751da..00000000 --- a/kopete/plugins/statistics/sqlite/vdbeaux.c +++ /dev/null @@ -1,1806 +0,0 @@ -/* -** 2003 September 6 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** This file contains code used for creating, destroying, and populating -** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior -** to version 2.8.7, all this code was combined into the vdbe.c source file. -** But that file was getting too big so this subroutines were split out. -*/ -#include "sqliteInt.h" -#include "os.h" -#include <ctype.h> -#include "vdbeInt.h" - - -/* -** When debugging the code generator in a symbolic debugger, one can -** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed -** as they are added to the instruction stream. -*/ -#ifndef NDEBUG -int sqlite3_vdbe_addop_trace = 0; -#endif - - -/* -** Create a new virtual database engine. -*/ -Vdbe *sqlite3VdbeCreate(sqlite3 *db){ - Vdbe *p; - p = sqliteMalloc( sizeof(Vdbe) ); - if( p==0 ) return 0; - p->db = db; - if( db->pVdbe ){ - db->pVdbe->pPrev = p; - } - p->pNext = db->pVdbe; - p->pPrev = 0; - db->pVdbe = p; - p->magic = VDBE_MAGIC_INIT; - return p; -} - -/* -** Turn tracing on or off -*/ -void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ - p->trace = trace; -} - -/* -** Resize the Vdbe.aOp array so that it contains at least N -** elements. -*/ -static void resizeOpArray(Vdbe *p, int N){ - if( p->nOpAlloc<N ){ - int oldSize = p->nOpAlloc; - p->nOpAlloc = N+100; - p->aOp = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op)); - if( p->aOp ){ - memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op)); - } - } -} - -/* -** Add a new instruction to the list of instructions current in the -** VDBE. Return the address of the new instruction. -** -** Parameters: -** -** p Pointer to the VDBE -** -** op The opcode for this instruction -** -** p1, p2 First two of the three possible operands. -** -** Use the sqlite3VdbeResolveLabel() function to fix an address and -** the sqlite3VdbeChangeP3() function to change the value of the P3 -** operand. -*/ -int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){ - int i; - VdbeOp *pOp; - - i = p->nOp; - p->nOp++; - assert( p->magic==VDBE_MAGIC_INIT ); - resizeOpArray(p, i+1); - if( p->aOp==0 ){ - return 0; - } - pOp = &p->aOp[i]; - pOp->opcode = op; - pOp->p1 = p1; - pOp->p2 = p2; - pOp->p3 = 0; - pOp->p3type = P3_NOTUSED; -#ifndef NDEBUG - if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); -#endif - return i; -} - -/* -** Add an opcode that includes the p3 value. -*/ -int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){ - int addr = sqlite3VdbeAddOp(p, op, p1, p2); - sqlite3VdbeChangeP3(p, addr, zP3, p3type); - return addr; -} - -/* -** Create a new symbolic label for an instruction that has yet to be -** coded. The symbolic label is really just a negative number. The -** label can be used as the P2 value of an operation. Later, when -** the label is resolved to a specific address, the VDBE will scan -** through its operation list and change all values of P2 which match -** the label into the resolved address. -** -** The VDBE knows that a P2 value is a label because labels are -** always negative and P2 values are suppose to be non-negative. -** Hence, a negative P2 value is a label that has yet to be resolved. -** -** Zero is returned if a malloc() fails. -*/ -int sqlite3VdbeMakeLabel(Vdbe *p){ - int i; - i = p->nLabel++; - assert( p->magic==VDBE_MAGIC_INIT ); - if( i>=p->nLabelAlloc ){ - p->nLabelAlloc = p->nLabelAlloc*2 + 10; - p->aLabel = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0])); - } - if( p->aLabel ){ - p->aLabel[i] = -1; - } - return -1-i; -} - -/* -** Resolve label "x" to be the address of the next instruction to -** be inserted. The parameter "x" must have been obtained from -** a prior call to sqlite3VdbeMakeLabel(). -*/ -void sqlite3VdbeResolveLabel(Vdbe *p, int x){ - int j = -1-x; - assert( p->magic==VDBE_MAGIC_INIT ); - assert( j>=0 && j<p->nLabel ); - if( p->aLabel ){ - p->aLabel[j] = p->nOp; - } -} - -/* -** Loop through the program looking for P2 values that are negative. -** Each such value is a label. Resolve the label by setting the P2 -** value to its correct non-zero value. -** -** This routine is called once after all opcodes have been inserted. -*/ -static void resolveP2Values(Vdbe *p){ - int i; - Op *pOp; - int *aLabel = p->aLabel; - if( aLabel==0 ) return; - for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ - if( pOp->p2>=0 ) continue; - assert( -1-pOp->p2<p->nLabel ); - pOp->p2 = aLabel[-1-pOp->p2]; - } - sqliteFree(p->aLabel); - p->aLabel = 0; -} - -/* -** Return the address of the next instruction to be inserted. -*/ -int sqlite3VdbeCurrentAddr(Vdbe *p){ - assert( p->magic==VDBE_MAGIC_INIT ); - return p->nOp; -} - -/* -** Add a whole list of operations to the operation stack. Return the -** address of the first operation added. -*/ -int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ - int addr; - assert( p->magic==VDBE_MAGIC_INIT ); - resizeOpArray(p, p->nOp + nOp); - if( p->aOp==0 ){ - return 0; - } - addr = p->nOp; - if( nOp>0 ){ - int i; - VdbeOpList const *pIn = aOp; - for(i=0; i<nOp; i++, pIn++){ - int p2 = pIn->p2; - VdbeOp *pOut = &p->aOp[i+addr]; - pOut->opcode = pIn->opcode; - pOut->p1 = pIn->p1; - pOut->p2 = p2<0 ? addr + ADDR(p2) : p2; - pOut->p3 = pIn->p3; - pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED; -#ifndef NDEBUG - if( sqlite3_vdbe_addop_trace ){ - sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); - } -#endif - } - p->nOp += nOp; - } - return addr; -} - -/* -** Change the value of the P1 operand for a specific instruction. -** This routine is useful when a large program is loaded from a -** static array using sqlite3VdbeAddOpList but we want to make a -** few minor changes to the program. -*/ -void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ - assert( p->magic==VDBE_MAGIC_INIT ); - if( p && addr>=0 && p->nOp>addr && p->aOp ){ - p->aOp[addr].p1 = val; - } -} - -/* -** Change the value of the P2 operand for a specific instruction. -** This routine is useful for setting a jump destination. -*/ -void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ - assert( val>=0 ); - assert( p->magic==VDBE_MAGIC_INIT ); - if( p && addr>=0 && p->nOp>addr && p->aOp ){ - p->aOp[addr].p2 = val; - } -} - -/* -** Change the value of the P3 operand for a specific instruction. -** This routine is useful when a large program is loaded from a -** static array using sqlite3VdbeAddOpList but we want to make a -** few minor changes to the program. -** -** If n>=0 then the P3 operand is dynamic, meaning that a copy of -** the string is made into memory obtained from sqliteMalloc(). -** A value of n==0 means copy bytes of zP3 up to and including the -** first null byte. If n>0 then copy n+1 bytes of zP3. -** -** If n==P3_STATIC it means that zP3 is a pointer to a constant static -** string and we can just copy the pointer. n==P3_POINTER means zP3 is -** a pointer to some object other than a string. n==P3_COLLSEQ and -** n==P3_KEYINFO mean that zP3 is a pointer to a CollSeq or KeyInfo -** structure. A copy is made of KeyInfo structures into memory obtained -** from sqliteMalloc. -** -** If addr<0 then change P3 on the most recently inserted instruction. -*/ -void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){ - Op *pOp; - assert( p->magic==VDBE_MAGIC_INIT ); - if( p==0 || p->aOp==0 ) return; - if( addr<0 || addr>=p->nOp ){ - addr = p->nOp - 1; - if( addr<0 ) return; - } - pOp = &p->aOp[addr]; - if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){ - sqliteFree(pOp->p3); - pOp->p3 = 0; - } - if( zP3==0 ){ - pOp->p3 = 0; - pOp->p3type = P3_NOTUSED; - }else if( n==P3_KEYINFO ){ - KeyInfo *pKeyInfo; - int nField, nByte; - nField = ((KeyInfo*)zP3)->nField; - nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]); - pKeyInfo = sqliteMallocRaw( nByte ); - pOp->p3 = (char*)pKeyInfo; - if( pKeyInfo ){ - memcpy(pKeyInfo, zP3, nByte); - pOp->p3type = P3_KEYINFO; - }else{ - pOp->p3type = P3_NOTUSED; - } - }else if( n==P3_KEYINFO_HANDOFF ){ - pOp->p3 = (char*)zP3; - pOp->p3type = P3_KEYINFO; - }else if( n<0 ){ - pOp->p3 = (char*)zP3; - pOp->p3type = n; - }else{ - if( n==0 ) n = strlen(zP3); - pOp->p3 = sqliteStrNDup(zP3, n); - pOp->p3type = P3_DYNAMIC; - } -} - -#ifndef NDEBUG -/* -** Replace the P3 field of the most recently coded instruction with -** comment text. -*/ -void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ - va_list ap; - assert( p->nOp>0 ); - assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 ); - va_start(ap, zFormat); - sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(zFormat, ap), P3_DYNAMIC); - va_end(ap); -} -#endif - -/* -** If the P3 operand to the specified instruction appears -** to be a quoted string token, then this procedure removes -** the quotes. -** -** The quoting operator can be either a grave ascent (ASCII 0x27) -** or a double quote character (ASCII 0x22). Two quotes in a row -** resolve to be a single actual quote character within the string. -*/ -void sqlite3VdbeDequoteP3(Vdbe *p, int addr){ - Op *pOp; - assert( p->magic==VDBE_MAGIC_INIT ); - if( p->aOp==0 ) return; - if( addr<0 || addr>=p->nOp ){ - addr = p->nOp - 1; - if( addr<0 ) return; - } - pOp = &p->aOp[addr]; - if( pOp->p3==0 || pOp->p3[0]==0 ) return; - if( pOp->p3type==P3_STATIC ){ - pOp->p3 = sqliteStrDup(pOp->p3); - pOp->p3type = P3_DYNAMIC; - } - assert( pOp->p3type==P3_DYNAMIC ); - sqlite3Dequote(pOp->p3); -} - -/* -** Search the current program starting at instruction addr for the given -** opcode and P2 value. Return the address plus 1 if found and 0 if not -** found. -*/ -int sqlite3VdbeFindOp(Vdbe *p, int addr, int op, int p2){ - int i; - assert( p->magic==VDBE_MAGIC_INIT ); - for(i=addr; i<p->nOp; i++){ - if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1; - } - return 0; -} - -/* -** Return the opcode for a given address. -*/ -VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ - assert( p->magic==VDBE_MAGIC_INIT ); - assert( addr>=0 && addr<p->nOp ); - return &p->aOp[addr]; -} - -/* -** Compute a string that describes the P3 parameter for an opcode. -** Use zTemp for any required temporary buffer space. -*/ -static char *displayP3(Op *pOp, char *zTemp, int nTemp){ - char *zP3; - assert( nTemp>=20 ); - switch( pOp->p3type ){ - case P3_POINTER: { - sprintf(zTemp, "ptr(%#x)", (int)pOp->p3); - zP3 = zTemp; - break; - } - case P3_KEYINFO: { - int i, j; - KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3; - sprintf(zTemp, "keyinfo(%d", pKeyInfo->nField); - i = strlen(zTemp); - for(j=0; j<pKeyInfo->nField; j++){ - CollSeq *pColl = pKeyInfo->aColl[j]; - if( pColl ){ - int n = strlen(pColl->zName); - if( i+n>nTemp-6 ){ - strcpy(&zTemp[i],",..."); - break; - } - zTemp[i++] = ','; - if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ - zTemp[i++] = '-'; - } - strcpy(&zTemp[i], pColl->zName); - i += n; - }else if( i+4<nTemp-6 ){ - strcpy(&zTemp[i],",nil"); - i += 4; - } - } - zTemp[i++] = ')'; - zTemp[i] = 0; - assert( i<nTemp ); - zP3 = zTemp; - break; - } - case P3_COLLSEQ: { - CollSeq *pColl = (CollSeq*)pOp->p3; - sprintf(zTemp, "collseq(%.20s)", pColl->zName); - zP3 = zTemp; - break; - } - case P3_FUNCDEF: { - FuncDef *pDef = (FuncDef*)pOp->p3; - char zNum[30]; - sprintf(zTemp, "%.*s", nTemp, pDef->zName); - sprintf(zNum,"(%d)", pDef->nArg); - if( strlen(zTemp)+strlen(zNum)+1<=nTemp ){ - strcat(zTemp, zNum); - } - zP3 = zTemp; - break; - } - default: { - zP3 = pOp->p3; - if( zP3==0 || pOp->opcode==OP_Noop ){ - zP3 = ""; - } - } - } - return zP3; -} - - -#if !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) -/* -** Print a single opcode. This routine is used for debugging only. -*/ -void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ - char *zP3; - char zPtr[50]; - static const char *zFormat1 = "%4d %-13s %4d %4d %s\n"; - if( pOut==0 ) pOut = stdout; - zP3 = displayP3(pOp, zPtr, sizeof(zPtr)); - fprintf(pOut, zFormat1, - pc, sqlite3OpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3); - fflush(pOut); -} -#endif - -/* -** Release an array of N Mem elements -*/ -static void releaseMemArray(Mem *p, int N){ - if( p ){ - while( N-->0 ){ - sqlite3VdbeMemRelease(p++); - } - } -} - -/* -** Give a listing of the program in the virtual machine. -** -** The interface is the same as sqlite3VdbeExec(). But instead of -** running the code, it invokes the callback once for each instruction. -** This feature is used to implement "EXPLAIN". -*/ -int sqlite3VdbeList( - Vdbe *p /* The VDBE */ -){ - sqlite3 *db = p->db; - int i; - int rc = SQLITE_OK; - - assert( p->explain ); - - /* Even though this opcode does not put dynamic strings onto the - ** the stack, they may become dynamic if the user calls - ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. - */ - if( p->pTos==&p->aStack[4] ){ - releaseMemArray(p->aStack, 5); - } - p->resOnStack = 0; - - i = p->pc++; - if( i>=p->nOp ){ - p->rc = SQLITE_OK; - rc = SQLITE_DONE; - }else if( db->flags & SQLITE_Interrupt ){ - db->flags &= ~SQLITE_Interrupt; - if( db->magic!=SQLITE_MAGIC_BUSY ){ - p->rc = SQLITE_MISUSE; - }else{ - p->rc = SQLITE_INTERRUPT; - } - rc = SQLITE_ERROR; - sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0); - }else{ - Op *pOp = &p->aOp[i]; - Mem *pMem = p->aStack; - pMem->flags = MEM_Int; - pMem->type = SQLITE_INTEGER; - pMem->i = i; /* Program counter */ - pMem++; - - pMem->flags = MEM_Static|MEM_Str|MEM_Term; - pMem->z = sqlite3OpcodeNames[pOp->opcode]; /* Opcode */ - pMem->n = strlen(pMem->z); - pMem->type = SQLITE_TEXT; - pMem->enc = SQLITE_UTF8; - pMem++; - - pMem->flags = MEM_Int; - pMem->i = pOp->p1; /* P1 */ - pMem->type = SQLITE_INTEGER; - pMem++; - - pMem->flags = MEM_Int; - pMem->i = pOp->p2; /* P2 */ - pMem->type = SQLITE_INTEGER; - pMem++; - - pMem->flags = MEM_Short|MEM_Str|MEM_Term; /* P3 */ - pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort)); - pMem->type = SQLITE_TEXT; - pMem->enc = SQLITE_UTF8; - - p->nResColumn = 5; - p->pTos = pMem; - p->rc = SQLITE_OK; - p->resOnStack = 1; - rc = SQLITE_ROW; - } - return rc; -} - -/* -** Print the SQL that was used to generate a VDBE program. -*/ -void sqlite3VdbePrintSql(Vdbe *p){ -#ifdef SQLITE_DEBUG - int nOp = p->nOp; - VdbeOp *pOp; - if( nOp<1 ) return; - pOp = &p->aOp[nOp-1]; - if( pOp->opcode==OP_Noop && pOp->p3!=0 ){ - const char *z = pOp->p3; - while( isspace(*(u8*)z) ) z++; - printf("SQL: [%s]\n", z); - } -#endif -} - -/* -** Prepare a virtual machine for execution. This involves things such -** as allocating stack space and initializing the program counter. -** After the VDBE has be prepped, it can be executed by one or more -** calls to sqlite3VdbeExec(). -** -** This is the only way to move a VDBE from VDBE_MAGIC_INIT to -** VDBE_MAGIC_RUN. -*/ -void sqlite3VdbeMakeReady( - Vdbe *p, /* The VDBE */ - int nVar, /* Number of '?' see in the SQL statement */ - int nMem, /* Number of memory cells to allocate */ - int nCursor, /* Number of cursors to allocate */ - int isExplain /* True if the EXPLAIN keywords is present */ -){ - int n; - - assert( p!=0 ); - assert( p->magic==VDBE_MAGIC_INIT ); - - /* There should be at least one opcode. - */ - assert( p->nOp>0 ); - - /* No instruction ever pushes more than a single element onto the - ** stack. And the stack never grows on successive executions of the - ** same loop. So the total number of instructions is an upper bound - ** on the maximum stack depth required. - ** - ** Allocation all the stack space we will ever need. - */ - if( p->aStack==0 ){ - resolveP2Values(p); - assert( nVar>=0 ); - n = isExplain ? 10 : p->nOp; - p->aStack = sqliteMalloc( - n*sizeof(p->aStack[0]) /* aStack */ - + n*sizeof(Mem*) /* apArg */ - + nVar*sizeof(Mem) /* aVar */ - + nVar*sizeof(char*) /* azVar */ - + nMem*sizeof(Mem) /* aMem */ - + nCursor*sizeof(Cursor*) /* apCsr */ - ); - if( !sqlite3_malloc_failed ){ - p->aMem = &p->aStack[n]; - p->nMem = nMem; - p->aVar = &p->aMem[nMem]; - p->nVar = nVar; - p->okVar = 0; - p->apArg = (Mem**)&p->aVar[nVar]; - p->azVar = (char**)&p->apArg[n]; - p->apCsr = (Cursor**)&p->azVar[nVar]; - p->nCursor = nCursor; - for(n=0; n<nVar; n++){ - p->aVar[n].flags = MEM_Null; - } - for(n=0; n<nMem; n++){ - p->aMem[n].flags = MEM_Null; - } - } - } - -#ifdef SQLITE_DEBUG - if( (p->db->flags & SQLITE_VdbeListing)!=0 - || sqlite3OsFileExists("vdbe_explain") - ){ - int i; - printf("VDBE Program Listing:\n"); - sqlite3VdbePrintSql(p); - for(i=0; i<p->nOp; i++){ - sqlite3VdbePrintOp(stdout, i, &p->aOp[i]); - } - } - if( sqlite3OsFileExists("vdbe_trace") ){ - p->trace = stdout; - } -#endif - p->pTos = &p->aStack[-1]; - p->pc = -1; - p->rc = SQLITE_OK; - p->uniqueCnt = 0; - p->returnDepth = 0; - p->errorAction = OE_Abort; - p->popStack = 0; - p->explain |= isExplain; - p->magic = VDBE_MAGIC_RUN; - p->nChange = 0; -#ifdef VDBE_PROFILE - { - int i; - for(i=0; i<p->nOp; i++){ - p->aOp[i].cnt = 0; - p->aOp[i].cycles = 0; - } - } -#endif -} - - -/* -** Remove any elements that remain on the sorter for the VDBE given. -*/ -void sqlite3VdbeSorterReset(Vdbe *p){ - while( p->pSort ){ - Sorter *pSorter = p->pSort; - p->pSort = pSorter->pNext; - sqliteFree(pSorter->zKey); - sqlite3VdbeMemRelease(&pSorter->data); - sqliteFree(pSorter); - } -} - -/* -** Free all resources allociated with AggElem pElem, an element of -** aggregate pAgg. -*/ -void freeAggElem(AggElem *pElem, Agg *pAgg){ - int i; - for(i=0; i<pAgg->nMem; i++){ - Mem *pMem = &pElem->aMem[i]; - if( pAgg->apFunc && pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){ - sqlite3_context ctx; - ctx.pFunc = pAgg->apFunc[i]; - ctx.s.flags = MEM_Null; - ctx.pAgg = pMem->z; - ctx.cnt = pMem->i; - ctx.isStep = 0; - ctx.isError = 0; - (*pAgg->apFunc[i]->xFinalize)(&ctx); - pMem->z = ctx.pAgg; - if( pMem->z!=0 && pMem->z!=pMem->zShort ){ - sqliteFree(pMem->z); - } - sqlite3VdbeMemRelease(&ctx.s); - }else{ - sqlite3VdbeMemRelease(pMem); - } - } - sqliteFree(pElem); -} - -/* -** Reset an Agg structure. Delete all its contents. -** -** For installable aggregate functions, if the step function has been -** called, make sure the finalizer function has also been called. The -** finalizer might need to free memory that was allocated as part of its -** private context. If the finalizer has not been called yet, call it -** now. -** -** If db is NULL, then this is being called from sqliteVdbeReset(). In -** this case clean up all references to the temp-table used for -** aggregates (if it was ever opened). -** -** If db is not NULL, then this is being called from with an OP_AggReset -** opcode. Open the temp-table, if it has not already been opened and -** delete the contents of the table used for aggregate information, ready -** for the next round of aggregate processing. -*/ -int sqlite3VdbeAggReset(sqlite3 *db, Agg *pAgg, KeyInfo *pKeyInfo){ - int rc = 0; - BtCursor *pCsr = pAgg->pCsr; - - assert( (pCsr && pAgg->nTab>0) || (!pCsr && pAgg->nTab==0) - || sqlite3_malloc_failed ); - - /* If pCsr is not NULL, then the table used for aggregate information - ** is open. Loop through it and free the AggElem* structure pointed at - ** by each entry. If the finalizer has not been called for an AggElem, - ** do that too. Finally, clear the btree table itself. - */ - if( pCsr ){ - int res; - assert( pAgg->pBtree ); - assert( pAgg->nTab>0 ); - - rc=sqlite3BtreeFirst(pCsr, &res); - while( res==0 && rc==SQLITE_OK ){ - AggElem *pElem; - rc = sqlite3BtreeData(pCsr, 0, sizeof(AggElem*), (char *)&pElem); - if( res!=SQLITE_OK ){ - return rc; - } - assert( pAgg->apFunc!=0 ); - freeAggElem(pElem, pAgg); - rc=sqlite3BtreeNext(pCsr, &res); - } - if( rc!=SQLITE_OK ){ - return rc; - } - - sqlite3BtreeCloseCursor(pCsr); - sqlite3BtreeClearTable(pAgg->pBtree, pAgg->nTab); - }else{ - /* The cursor may not be open because the aggregator was never used, - ** or it could be that it was used but there was no GROUP BY clause. - */ - if( pAgg->pCurrent ){ - freeAggElem(pAgg->pCurrent, pAgg); - } - } - - /* If db is not NULL and we have not yet and we have not yet opened - ** the temporary btree then do so and create the table to store aggregate - ** information. - ** - ** If db is NULL, then close the temporary btree if it is open. - */ - if( db ){ - if( !pAgg->pBtree ){ - assert( pAgg->nTab==0 ); - rc = sqlite3BtreeFactory(db, ":memory:", 0, TEMP_PAGES, &pAgg->pBtree); - if( rc!=SQLITE_OK ) return rc; - sqlite3BtreeBeginTrans(pAgg->pBtree, 1); - rc = sqlite3BtreeCreateTable(pAgg->pBtree, &pAgg->nTab, 0); - if( rc!=SQLITE_OK ) return rc; - } - assert( pAgg->nTab!=0 ); - - rc = sqlite3BtreeCursor(pAgg->pBtree, pAgg->nTab, 1, - sqlite3VdbeRecordCompare, pKeyInfo, &pAgg->pCsr); - if( rc!=SQLITE_OK ) return rc; - }else{ - if( pAgg->pBtree ){ - sqlite3BtreeClose(pAgg->pBtree); - pAgg->pBtree = 0; - pAgg->nTab = 0; - } - pAgg->pCsr = 0; - } - - if( pAgg->apFunc ){ - sqliteFree(pAgg->apFunc); - pAgg->apFunc = 0; - } - pAgg->pCurrent = 0; - pAgg->nMem = 0; - pAgg->searching = 0; - return SQLITE_OK; -} - - -/* -** Delete a keylist -*/ -void sqlite3VdbeKeylistFree(Keylist *p){ - while( p ){ - Keylist *pNext = p->pNext; - sqliteFree(p); - p = pNext; - } -} - -/* -** Close a cursor and release all the resources that cursor happens -** to hold. -*/ -void sqlite3VdbeFreeCursor(Cursor *pCx){ - if( pCx==0 ){ - return; - } - if( pCx->pCursor ){ - sqlite3BtreeCloseCursor(pCx->pCursor); - } - if( pCx->pBt ){ - sqlite3BtreeClose(pCx->pBt); - } - sqliteFree(pCx->pData); - sqliteFree(pCx->aType); - sqliteFree(pCx); -} - -/* -** Close all cursors -*/ -static void closeAllCursors(Vdbe *p){ - int i; - if( p->apCsr==0 ) return; - for(i=0; i<p->nCursor; i++){ - sqlite3VdbeFreeCursor(p->apCsr[i]); - p->apCsr[i] = 0; - } -} - -/* -** Clean up the VM after execution. -** -** This routine will automatically close any cursors, lists, and/or -** sorters that were left open. It also deletes the values of -** variables in the aVar[] array. -*/ -static void Cleanup(Vdbe *p){ - int i; - if( p->aStack ){ - releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack)); - p->pTos = &p->aStack[-1]; - } - closeAllCursors(p); - releaseMemArray(p->aMem, p->nMem); - if( p->pList ){ - sqlite3VdbeKeylistFree(p->pList); - p->pList = 0; - } - if( p->contextStack ){ - for(i=0; i<p->contextStackTop; i++){ - sqlite3VdbeKeylistFree(p->contextStack[i].pList); - } - sqliteFree(p->contextStack); - } - sqlite3VdbeSorterReset(p); - sqlite3VdbeAggReset(0, &p->agg, 0); - p->contextStack = 0; - p->contextStackDepth = 0; - p->contextStackTop = 0; - sqliteFree(p->zErrMsg); - p->zErrMsg = 0; -} - -/* -** Set the number of result columns that will be returned by this SQL -** statement. This is now set at compile time, rather than during -** execution of the vdbe program so that sqlite3_column_count() can -** be called on an SQL statement before sqlite3_step(). -*/ -void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ - Mem *pColName; - int n; - assert( 0==p->nResColumn ); - p->nResColumn = nResColumn; - n = nResColumn*2; - p->aColName = pColName = (Mem*)sqliteMalloc( sizeof(Mem)*n ); - if( p->aColName==0 ) return; - while( n-- > 0 ){ - (pColName++)->flags = MEM_Null; - } -} - -/* -** Set the name of the idx'th column to be returned by the SQL statement. -** zName must be a pointer to a nul terminated string. -** -** This call must be made after a call to sqlite3VdbeSetNumCols(). -** -** If N==P3_STATIC it means that zName is a pointer to a constant static -** string and we can just copy the pointer. If it is P3_DYNAMIC, then -** the string is freed using sqliteFree() when the vdbe is finished with -** it. Otherwise, N bytes of zName are copied. -*/ -int sqlite3VdbeSetColName(Vdbe *p, int idx, const char *zName, int N){ - int rc; - Mem *pColName; - assert( idx<(2*p->nResColumn) ); - if( sqlite3_malloc_failed ) return SQLITE_NOMEM; - assert( p->aColName!=0 ); - pColName = &(p->aColName[idx]); - if( N==P3_DYNAMIC || N==P3_STATIC ){ - rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC); - }else{ - rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT); - } - if( rc==SQLITE_OK && N==P3_DYNAMIC ){ - pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn; - pColName->xDel = 0; - } - return rc; -} - -/* -** A read or write transaction may or may not be active on database handle -** db. If a transaction is active, commit it. If there is a -** write-transaction spanning more than one database file, this routine -** takes care of the master journal trickery. -*/ -static int vdbeCommit(sqlite3 *db){ - int i; - int nTrans = 0; /* Number of databases with an active write-transaction */ - int rc = SQLITE_OK; - int needXcommit = 0; - - for(i=0; i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt && sqlite3BtreeIsInTrans(pBt) ){ - needXcommit = 1; - if( i!=1 ) nTrans++; - } - } - - /* If there are any write-transactions at all, invoke the commit hook */ - if( needXcommit && db->xCommitCallback ){ - int rc; - sqlite3SafetyOff(db); - rc = db->xCommitCallback(db->pCommitArg); - sqlite3SafetyOn(db); - if( rc ){ - return SQLITE_CONSTRAINT; - } - } - - /* The simple case - no more than one database file (not counting the - ** TEMP database) has a transaction active. There is no need for the - ** master-journal. - ** - ** If the return value of sqlite3BtreeGetFilename() is a zero length - ** string, it means the main database is :memory:. In that case we do - ** not support atomic multi-file commits, so use the simple case then - ** too. - */ - if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){ - for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - rc = sqlite3BtreeSync(pBt, 0); - } - } - - /* Do the commit only if all databases successfully synced */ - if( rc==SQLITE_OK ){ - for(i=0; i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - sqlite3BtreeCommit(pBt); - } - } - } - } - - /* The complex case - There is a multi-file write-transaction active. - ** This requires a master journal file to ensure the transaction is - ** committed atomicly. - */ - else{ - char *zMaster = 0; /* File-name for the master journal */ - char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); - OsFile master; - - /* Select a master journal file name */ - do { - u32 random; - sqliteFree(zMaster); - sqlite3Randomness(sizeof(random), &random); - zMaster = sqlite3MPrintf("%s-mj%08X", zMainFile, random&0x7fffffff); - if( !zMaster ){ - return SQLITE_NOMEM; - } - }while( sqlite3OsFileExists(zMaster) ); - - /* Open the master journal. */ - memset(&master, 0, sizeof(master)); - rc = sqlite3OsOpenExclusive(zMaster, &master, 0); - if( rc!=SQLITE_OK ){ - sqliteFree(zMaster); - return rc; - } - - /* Write the name of each database file in the transaction into the new - ** master journal file. If an error occurs at this point close - ** and delete the master journal file. All the individual journal files - ** still have 'null' as the master journal pointer, so they will roll - ** back independantly if a failure occurs. - */ - for(i=0; i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( i==1 ) continue; /* Ignore the TEMP database */ - if( pBt && sqlite3BtreeIsInTrans(pBt) ){ - char const *zFile = sqlite3BtreeGetJournalname(pBt); - if( zFile[0]==0 ) continue; /* Ignore :memory: databases */ - rc = sqlite3OsWrite(&master, zFile, strlen(zFile)+1); - if( rc!=SQLITE_OK ){ - sqlite3OsClose(&master); - sqlite3OsDelete(zMaster); - sqliteFree(zMaster); - return rc; - } - } - } - - - /* Sync the master journal file. Before doing this, open the directory - ** the master journal file is store in so that it gets synced too. - */ - zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt); - rc = sqlite3OsOpenDirectory(zMainFile, &master); - if( rc!=SQLITE_OK ){ - sqlite3OsClose(&master); - sqlite3OsDelete(zMaster); - sqliteFree(zMaster); - return rc; - } - rc = sqlite3OsSync(&master); - if( rc!=SQLITE_OK ){ - sqlite3OsClose(&master); - sqliteFree(zMaster); - return rc; - } - - /* Sync all the db files involved in the transaction. The same call - ** sets the master journal pointer in each individual journal. If - ** an error occurs here, do not delete the master journal file. - ** - ** If the error occurs during the first call to sqlite3BtreeSync(), - ** then there is a chance that the master journal file will be - ** orphaned. But we cannot delete it, in case the master journal - ** file name was written into the journal file before the failure - ** occured. - */ - for(i=0; i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt && sqlite3BtreeIsInTrans(pBt) ){ - rc = sqlite3BtreeSync(pBt, zMaster); - if( rc!=SQLITE_OK ){ - sqlite3OsClose(&master); - sqliteFree(zMaster); - return rc; - } - } - } - sqlite3OsClose(&master); - - /* Delete the master journal file. This commits the transaction. After - ** doing this the directory is synced again before any individual - ** transaction files are deleted. - */ - rc = sqlite3OsDelete(zMaster); - assert( rc==SQLITE_OK ); - sqliteFree(zMaster); - zMaster = 0; - rc = sqlite3OsSyncDirectory(zMainFile); - if( rc!=SQLITE_OK ){ - /* This is not good. The master journal file has been deleted, but - ** the directory sync failed. There is no completely safe course of - ** action from here. The individual journals contain the name of the - ** master journal file, but there is no way of knowing if that - ** master journal exists now or if it will exist after the operating - ** system crash that may follow the fsync() failure. - */ - assert(0); - sqliteFree(zMaster); - return rc; - } - - /* All files and directories have already been synced, so the following - ** calls to sqlite3BtreeCommit() are only closing files and deleting - ** journals. If something goes wrong while this is happening we don't - ** really care. The integrity of the transaction is already guaranteed, - ** but some stray 'cold' journals may be lying around. Returning an - ** error code won't help matters. - */ - for(i=0; i<db->nDb; i++){ - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - sqlite3BtreeCommit(pBt); - } - } - } - - return rc; -} - -/* -** Find every active VM other than pVdbe and change its status to -** aborted. This happens when one VM causes a rollback due to an -** ON CONFLICT ROLLBACK clause (for example). The other VMs must be -** aborted so that they do not have data rolled out from underneath -** them leading to a segfault. -*/ -static void abortOtherActiveVdbes(Vdbe *pVdbe){ - Vdbe *pOther; - for(pOther=pVdbe->db->pVdbe; pOther; pOther=pOther->pNext){ - if( pOther==pVdbe ) continue; - if( pOther->magic!=VDBE_MAGIC_RUN || pOther->pc<0 ) continue; - closeAllCursors(pOther); - pOther->aborted = 1; - } -} - -/* -** This routine checks that the sqlite3.activeVdbeCnt count variable -** matches the number of vdbe's in the list sqlite3.pVdbe that are -** currently active. An assertion fails if the two counts do not match. -** This is an internal self-check only - it is not an essential processing -** step. -** -** This is a no-op if NDEBUG is defined. -*/ -#ifndef NDEBUG -static void checkActiveVdbeCnt(sqlite3 *db){ - Vdbe *p; - int cnt = 0; - p = db->pVdbe; - while( p ){ - if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ - cnt++; - } - p = p->pNext; - } - assert( cnt==db->activeVdbeCnt ); -} -#else -#define checkActiveVdbeCnt(x) -#endif - -/* -** This routine is called the when a VDBE tries to halt. If the VDBE -** has made changes and is in autocommit mode, then commit those -** changes. If a rollback is needed, then do the rollback. -** -** This routine is the only way to move the state of a VM from -** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. -** -** Return an error code. If the commit could not complete because of -** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it -** means the close did not happen and needs to be repeated. -*/ -int sqlite3VdbeHalt(Vdbe *p){ - sqlite3 *db = p->db; - int i; - int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */ - - if( p->magic!=VDBE_MAGIC_RUN ){ - /* Already halted. Nothing to do. */ - assert( p->magic==VDBE_MAGIC_HALT ); - return SQLITE_OK; - } - closeAllCursors(p); - checkActiveVdbeCnt(db); - if( db->autoCommit && db->activeVdbeCnt==1 ){ - if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ - /* The auto-commit flag is true, there are no other active queries - ** using this handle and the vdbe program was successful or hit an - ** 'OR FAIL' constraint. This means a commit is required. - */ - int rc = vdbeCommit(db); - if( rc==SQLITE_BUSY ){ - return SQLITE_BUSY; - }else if( rc!=SQLITE_OK ){ - p->rc = rc; - xFunc = sqlite3BtreeRollback; - } - }else{ - xFunc = sqlite3BtreeRollback; - } - }else{ - if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ - xFunc = sqlite3BtreeCommitStmt; - }else if( p->errorAction==OE_Abort ){ - xFunc = sqlite3BtreeRollbackStmt; - }else{ - xFunc = sqlite3BtreeRollback; - db->autoCommit = 1; - abortOtherActiveVdbes(p); - } - } - - /* If xFunc is not NULL, then it is one of sqlite3BtreeRollback, - ** sqlite3BtreeRollbackStmt or sqlite3BtreeCommitStmt. Call it once on - ** each backend. If an error occurs and the return code is still - ** SQLITE_OK, set the return code to the new error value. - */ - for(i=0; xFunc && i<db->nDb; i++){ - int rc; - Btree *pBt = db->aDb[i].pBt; - if( pBt ){ - rc = xFunc(pBt); - if( p->rc==SQLITE_OK ) p->rc = rc; - } - } - - /* If this was an INSERT, UPDATE or DELETE, set the change counter. */ - if( p->changeCntOn ){ - if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){ - sqlite3VdbeSetChanges(db, p->nChange); - }else{ - sqlite3VdbeSetChanges(db, 0); - } - p->nChange = 0; - } - - /* Rollback or commit any schema changes that occurred. */ - if( p->rc!=SQLITE_OK ){ - sqlite3RollbackInternalChanges(db); - }else if( db->flags & SQLITE_InternChanges ){ - sqlite3CommitInternalChanges(db); - } - - /* We have successfully halted and closed the VM. Record this fact. */ - if( p->pc>=0 ){ - db->activeVdbeCnt--; - } - p->magic = VDBE_MAGIC_HALT; - checkActiveVdbeCnt(db); - - return SQLITE_OK; -} - -/* -** Clean up a VDBE after execution but do not delete the VDBE just yet. -** Write any error messages into *pzErrMsg. Return the result code. -** -** After this routine is run, the VDBE should be ready to be executed -** again. -** -** To look at it another way, this routine resets the state of the -** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to -** VDBE_MAGIC_INIT. -*/ -int sqlite3VdbeReset(Vdbe *p){ - if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){ - sqlite3Error(p->db, SQLITE_MISUSE, 0); - return SQLITE_MISUSE; - } - - /* If the VM did not run to completion or if it encountered an - ** error, then it might not have been halted properly. So halt - ** it now. - */ - sqlite3VdbeHalt(p); - - /* Transfer the error code and error message from the VDBE into the - ** main database structure. - */ - if( p->zErrMsg ){ - sqlite3Error(p->db, p->rc, "%s", p->zErrMsg); - sqliteFree(p->zErrMsg); - p->zErrMsg = 0; - }else if( p->rc ){ - sqlite3Error(p->db, p->rc, 0); - }else{ - sqlite3Error(p->db, SQLITE_OK, 0); - } - - /* Reclaim all memory used by the VDBE - */ - Cleanup(p); - - /* Save profiling information from this VDBE run. - */ - assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || sqlite3_malloc_failed==1 ); -#ifdef VDBE_PROFILE - { - FILE *out = fopen("vdbe_profile.out", "a"); - if( out ){ - int i; - fprintf(out, "---- "); - for(i=0; i<p->nOp; i++){ - fprintf(out, "%02x", p->aOp[i].opcode); - } - fprintf(out, "\n"); - for(i=0; i<p->nOp; i++){ - fprintf(out, "%6d %10lld %8lld ", - p->aOp[i].cnt, - p->aOp[i].cycles, - p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 - ); - sqlite3VdbePrintOp(out, i, &p->aOp[i]); - } - fclose(out); - } - } -#endif - p->magic = VDBE_MAGIC_INIT; - p->aborted = 0; - return p->rc; -} - -/* -** Clean up and delete a VDBE after execution. Return an integer which is -** the result code. Write any error message text into *pzErrMsg. -*/ -int sqlite3VdbeFinalize(Vdbe *p){ - int rc = SQLITE_OK; - sqlite3 *db = p->db; - - if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ - rc = sqlite3VdbeReset(p); - }else if( p->magic!=VDBE_MAGIC_INIT ){ - /* sqlite3Error(p->db, SQLITE_MISUSE, 0); */ - return SQLITE_MISUSE; - } - sqlite3VdbeDelete(p); - if( rc==SQLITE_SCHEMA ){ - sqlite3ResetInternalSchema(db, 0); - } - return rc; -} - -/* -** Call the destructor for each auxdata entry in pVdbeFunc for which -** the corresponding bit in mask is clear. Auxdata entries beyond 31 -** are always destroyed. To destroy all auxdata entries, call this -** routine with mask==0. -*/ -void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ - int i; - for(i=0; i<pVdbeFunc->nAux; i++){ - struct AuxData *pAux = &pVdbeFunc->apAux[i]; - if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){ - if( pAux->xDelete ){ - pAux->xDelete(pAux->pAux); - } - pAux->pAux = 0; - } - } -} - -/* -** Delete an entire VDBE. -*/ -void sqlite3VdbeDelete(Vdbe *p){ - int i; - if( p==0 ) return; - Cleanup(p); - if( p->pPrev ){ - p->pPrev->pNext = p->pNext; - }else{ - assert( p->db->pVdbe==p ); - p->db->pVdbe = p->pNext; - } - if( p->pNext ){ - p->pNext->pPrev = p->pPrev; - } - if( p->aOp ){ - for(i=0; i<p->nOp; i++){ - Op *pOp = &p->aOp[i]; - if( pOp->p3type==P3_DYNAMIC || pOp->p3type==P3_KEYINFO ){ - sqliteFree(pOp->p3); - } - if( pOp->p3type==P3_VDBEFUNC ){ - VdbeFunc *pVdbeFunc = (VdbeFunc *)pOp->p3; - sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); - sqliteFree(pVdbeFunc); - } - } - sqliteFree(p->aOp); - } - releaseMemArray(p->aVar, p->nVar); - sqliteFree(p->aLabel); - sqliteFree(p->aStack); - releaseMemArray(p->aColName, p->nResColumn*2); - sqliteFree(p->aColName); - p->magic = VDBE_MAGIC_DEAD; - sqliteFree(p); -} - -/* -** If a MoveTo operation is pending on the given cursor, then do that -** MoveTo now. Return an error code. If no MoveTo is pending, this -** routine does nothing and returns SQLITE_OK. -*/ -int sqlite3VdbeCursorMoveto(Cursor *p){ - if( p->deferredMoveto ){ - int res; - extern int sqlite3_search_count; - assert( p->intKey ); - if( p->intKey ){ - sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, &res); - }else{ - sqlite3BtreeMoveto(p->pCursor,(char*)&p->movetoTarget,sizeof(i64),&res); - } - *p->pIncrKey = 0; - p->lastRecno = keyToInt(p->movetoTarget); - p->recnoIsValid = res==0; - if( res<0 ){ - sqlite3BtreeNext(p->pCursor, &res); - } - sqlite3_search_count++; - p->deferredMoveto = 0; - p->cacheValid = 0; - } - return SQLITE_OK; -} - -/* -** The following functions: -** -** sqlite3VdbeSerialType() -** sqlite3VdbeSerialTypeLen() -** sqlite3VdbeSerialRead() -** sqlite3VdbeSerialLen() -** sqlite3VdbeSerialWrite() -** -** encapsulate the code that serializes values for storage in SQLite -** data and index records. Each serialized value consists of a -** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned -** integer, stored as a varint. -** -** In an SQLite index record, the serial type is stored directly before -** the blob of data that it corresponds to. In a table record, all serial -** types are stored at the start of the record, and the blobs of data at -** the end. Hence these functions allow the caller to handle the -** serial-type and data blob seperately. -** -** The following table describes the various storage classes for data: -** -** serial type bytes of data type -** -------------- --------------- --------------- -** 0 0 NULL -** 1 1 signed integer -** 2 2 signed integer -** 3 3 signed integer -** 4 4 signed integer -** 5 6 signed integer -** 6 8 signed integer -** 7 8 IEEE float -** 8-11 reserved for expansion -** N>=12 and even (N-12)/2 BLOB -** N>=13 and odd (N-13)/2 text -** -*/ - -/* -** Return the serial-type for the value stored in pMem. -*/ -u32 sqlite3VdbeSerialType(Mem *pMem){ - int flags = pMem->flags; - - if( flags&MEM_Null ){ - return 0; - } - if( flags&MEM_Int ){ - /* Figure out whether to use 1, 2, 4 or 8 bytes. */ - i64 i = pMem->i; - if( i>=-127 && i<=127 ) return 1; - if( i>=-32767 && i<=32767 ) return 2; - if( i>=-8388607 && i<=8388607 ) return 3; - if( i>=-2147483647 && i<=2147483647 ) return 4; - if( i>=-140737488355328L && i<=140737488355328L ) return 5; - return 6; - } - if( flags&MEM_Real ){ - return 7; - } - if( flags&MEM_Str ){ - int n = pMem->n; - assert( n>=0 ); - return ((n*2) + 13); - } - if( flags&MEM_Blob ){ - return (pMem->n*2 + 12); - } - return 0; -} - -/* -** Return the length of the data corresponding to the supplied serial-type. -*/ -int sqlite3VdbeSerialTypeLen(u32 serial_type){ - if( serial_type>=12 ){ - return (serial_type-12)/2; - }else{ - static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; - return aSize[serial_type]; - } -} - -/* -** Write the serialized data blob for the value stored in pMem into -** buf. It is assumed that the caller has allocated sufficient space. -** Return the number of bytes written. -*/ -int sqlite3VdbeSerialPut(unsigned char *buf, Mem *pMem){ - u32 serial_type = sqlite3VdbeSerialType(pMem); - int len; - - /* NULL */ - if( serial_type==0 ){ - return 0; - } - - /* Integer and Real */ - if( serial_type<=7 ){ - u64 v; - int i; - if( serial_type==7 ){ - v = *(u64*)&pMem->r; - }else{ - v = *(u64*)&pMem->i; - } - len = i = sqlite3VdbeSerialTypeLen(serial_type); - while( i-- ){ - buf[i] = (v&0xFF); - v >>= 8; - } - return len; - } - - /* String or blob */ - assert( serial_type>=12 ); - len = sqlite3VdbeSerialTypeLen(serial_type); - memcpy(buf, pMem->z, len); - return len; -} - -/* -** Deserialize the data blob pointed to by buf as serial type serial_type -** and store the result in pMem. Return the number of bytes read. -*/ -int sqlite3VdbeSerialGet( - const unsigned char *buf, /* Buffer to deserialize from */ - u32 serial_type, /* Serial type to deserialize */ - Mem *pMem /* Memory cell to write value into */ -){ - int len; - - if( serial_type==0 ){ - /* NULL */ - pMem->flags = MEM_Null; - return 0; - } - len = sqlite3VdbeSerialTypeLen(serial_type); - if( serial_type<=7 ){ - /* Integer and Real */ - if( serial_type<=4 ){ - /* 32-bit integer type. This is handled by a special case for - ** performance reasons. */ - int v = buf[0]; - int n; - if( v&0x80 ){ - v |= -256; - } - for(n=1; n<len; n++){ - v = (v<<8) | buf[n]; - } - pMem->flags = MEM_Int; - pMem->i = v; - return n; - }else{ - u64 v = 0; - int n; - - if( buf[0]&0x80 ){ - v = -1; - } - for(n=0; n<len; n++){ - v = (v<<8) | buf[n]; - } - if( serial_type==7 ){ - pMem->flags = MEM_Real; - pMem->r = *(double*)&v; - }else{ - pMem->flags = MEM_Int; - pMem->i = *(i64*)&v; - } - } - }else{ - /* String or blob */ - assert( serial_type>=12 ); - pMem->z = (char *)buf; - pMem->n = len; - pMem->xDel = 0; - if( serial_type&0x01 ){ - pMem->flags = MEM_Str | MEM_Ephem; - }else{ - pMem->flags = MEM_Blob | MEM_Ephem; - } - } - return len; -} - -/* -** This function compares the two table rows or index records specified by -** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero -** or positive integer if {nKey1, pKey1} is less than, equal to or -** greater than {nKey2, pKey2}. Both Key1 and Key2 must be byte strings -** composed by the OP_MakeRecord opcode of the VDBE. -*/ -int sqlite3VdbeRecordCompare( - void *userData, - int nKey1, const void *pKey1, - int nKey2, const void *pKey2 -){ - KeyInfo *pKeyInfo = (KeyInfo*)userData; - u32 d1, d2; /* Offset into aKey[] of next data element */ - u32 idx1, idx2; /* Offset into aKey[] of next header element */ - u32 szHdr1, szHdr2; /* Number of bytes in header */ - int i = 0; - int nField; - int rc = 0; - const unsigned char *aKey1 = (const unsigned char *)pKey1; - const unsigned char *aKey2 = (const unsigned char *)pKey2; - - Mem mem1; - Mem mem2; - mem1.enc = pKeyInfo->enc; - mem2.enc = pKeyInfo->enc; - - idx1 = sqlite3GetVarint32(pKey1, &szHdr1); - d1 = szHdr1; - idx2 = sqlite3GetVarint32(pKey2, &szHdr2); - d2 = szHdr2; - nField = pKeyInfo->nField; - while( idx1<szHdr1 && idx2<szHdr2 ){ - u32 serial_type1; - u32 serial_type2; - - /* Read the serial types for the next element in each key. */ - idx1 += sqlite3GetVarint32(&aKey1[idx1], &serial_type1); - if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; - idx2 += sqlite3GetVarint32(&aKey2[idx2], &serial_type2); - if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break; - - /* Assert that there is enough space left in each key for the blob of - ** data to go with the serial type just read. This assert may fail if - ** the file is corrupted. Then read the value from each key into mem1 - ** and mem2 respectively. - */ - d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); - d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2); - - rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0); - sqlite3VdbeMemRelease(&mem1); - sqlite3VdbeMemRelease(&mem2); - if( rc!=0 ){ - break; - } - i++; - } - - /* One of the keys ran out of fields, but all the fields up to that point - ** were equal. If the incrKey flag is true, then the second key is - ** treated as larger. - */ - if( rc==0 ){ - if( pKeyInfo->incrKey ){ - rc = -1; - }else if( d1<nKey1 ){ - rc = 1; - }else if( d2<nKey2 ){ - rc = -1; - } - } - - if( pKeyInfo->aSortOrder && i<pKeyInfo->nField && pKeyInfo->aSortOrder[i] ){ - rc = -rc; - } - - return rc; -} - -/* -** The argument is an index entry composed using the OP_MakeRecord opcode. -** The last entry in this record should be an integer (specifically -** an integer rowid). This routine returns the number of bytes in -** that integer. -*/ -int sqlite3VdbeIdxRowidLen(int nKey, const u8 *aKey){ - u32 szHdr; /* Size of the header */ - u32 typeRowid; /* Serial type of the rowid */ - - sqlite3GetVarint32(aKey, &szHdr); - sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid); - return sqlite3VdbeSerialTypeLen(typeRowid); -} - - -/* -** pCur points at an index entry created using the OP_MakeRecord opcode. -** Read the rowid (the last field in the record) and store it in *rowid. -** Return SQLITE_OK if everything works, or an error code otherwise. -*/ -int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){ - i64 nCellKey; - int rc; - u32 szHdr; /* Size of the header */ - u32 typeRowid; /* Serial type of the rowid */ - u32 lenRowid; /* Size of the rowid */ - Mem m, v; - - sqlite3BtreeKeySize(pCur, &nCellKey); - if( nCellKey<=0 ){ - return SQLITE_CORRUPT; - } - rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m); - if( rc ){ - return rc; - } - sqlite3GetVarint32(m.z, &szHdr); - sqlite3GetVarint32(&m.z[szHdr-1], &typeRowid); - lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); - sqlite3VdbeSerialGet(&m.z[m.n-lenRowid], typeRowid, &v); - *rowid = v.i; - sqlite3VdbeMemRelease(&m); - return SQLITE_OK; -} - -/* -** Compare the key of the index entry that cursor pC is point to against -** the key string in pKey (of length nKey). Write into *pRes a number -** that is negative, zero, or positive if pC is less than, equal to, -** or greater than pKey. Return SQLITE_OK on success. -** -** pKey is either created without a rowid or is truncated so that it -** omits the rowid at the end. The rowid at the end of the index entry -** is ignored as well. -*/ -int sqlite3VdbeIdxKeyCompare( - Cursor *pC, /* The cursor to compare against */ - int nKey, const u8 *pKey, /* The key to compare */ - int *res /* Write the comparison result here */ -){ - i64 nCellKey; - int rc; - BtCursor *pCur = pC->pCursor; - int lenRowid; - Mem m; - - sqlite3BtreeKeySize(pCur, &nCellKey); - if( nCellKey<=0 ){ - *res = 0; - return SQLITE_OK; - } - rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m); - if( rc ){ - return rc; - } - lenRowid = sqlite3VdbeIdxRowidLen(m.n, m.z); - *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey); - sqlite3VdbeMemRelease(&m); - return SQLITE_OK; -} - -/* -** This routine sets the value to be returned by subsequent calls to -** sqlite3_changes() on the database handle 'db'. -*/ -void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ - db->nChange = nChange; - db->nTotalChange += nChange; -} - -/* -** Set a flag in the vdbe to update the change counter when it is finalised -** or reset. -*/ -void sqlite3VdbeCountChanges(Vdbe *p){ - p->changeCntOn = 1; -} |