diff options
author | Timothy Pearson <[email protected]> | 2011-11-08 12:31:36 -0600 |
---|---|---|
committer | Timothy Pearson <[email protected]> | 2011-11-08 12:31:36 -0600 |
commit | d796c9dd933ab96ec83b9a634feedd5d32e1ba3f (patch) | |
tree | 6e3dcca4f77e20ec8966c666aac7c35bd4704053 /src/3rdparty/libjpeg/jidctflt.c | |
download | tqt3-d796c9dd933ab96ec83b9a634feedd5d32e1ba3f.tar.gz tqt3-d796c9dd933ab96ec83b9a634feedd5d32e1ba3f.zip |
Test conversion to TQt3 from Qt3 8c6fc1f8e35fd264dd01c582ca5e7549b32ab731
Diffstat (limited to 'src/3rdparty/libjpeg/jidctflt.c')
-rw-r--r-- | src/3rdparty/libjpeg/jidctflt.c | 242 |
1 files changed, 242 insertions, 0 deletions
diff --git a/src/3rdparty/libjpeg/jidctflt.c b/src/3rdparty/libjpeg/jidctflt.c new file mode 100644 index 000000000..a4893f843 --- /dev/null +++ b/src/3rdparty/libjpeg/jidctflt.c @@ -0,0 +1,242 @@ +/* + * jidctflt.c + * + * Copyright (C) 1994-1998, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains a floating-point implementation of the + * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine + * must also perform dequantization of the input coefficients. + * + * This implementation should be more accurate than either of the integer + * IDCT implementations. However, it may not give the same results on all + * machines because of differences in roundoff behavior. Speed will depend + * on the hardware's floating point capacity. + * + * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT + * on each row (or vice versa, but it's more convenient to emit a row at + * a time). Direct algorithms are also available, but they are much more + * complex and seem not to be any faster when reduced to code. + * + * This implementation is based on Arai, Agui, and Nakajima's algorithm for + * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in + * Japanese, but the algorithm is described in the Pennebaker & Mitchell + * JPEG textbook (see REFERENCES section in file README). The following code + * is based directly on figure 4-8 in P&M. + * While an 8-point DCT cannot be done in less than 11 multiplies, it is + * possible to arrange the computation so that many of the multiplies are + * simple scalings of the final outputs. These multiplies can then be + * folded into the multiplications or divisions by the JPEG quantization + * table entries. The AA&N method leaves only 5 multiplies and 29 adds + * to be done in the DCT itself. + * The primary disadvantage of this method is that with a fixed-point + * implementation, accuracy is lost due to imprecise representation of the + * scaled quantization values. However, that problem does not arise if + * we use floating point arithmetic. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h" /* Private declarations for DCT subsystem */ + +#ifdef DCT_FLOAT_SUPPORTED + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 + Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* Dequantize a coefficient by multiplying it by the multiplier-table + * entry; produce a float result. + */ + +#define DETQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) + + +/* + * Perform dequantization and inverse DCT on one block of coefficients. + */ + +GLOBAL(void) +jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, + JCOEFPTR coef_block, + JSAMPARRAY output_buf, JDIMENSION output_col) +{ + FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + FAST_FLOAT tmp10, tmp11, tmp12, tmp13; + FAST_FLOAT z5, z10, z11, z12, z13; + JCOEFPTR inptr; + FLOAT_MULT_TYPE * quantptr; + FAST_FLOAT * wsptr; + JSAMPROW outptr; + JSAMPLE *range_limit = IDCT_range_limit(cinfo); + int ctr; + FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ + SHIFT_TEMPS + + /* Pass 1: process columns from input, store into work array. */ + + inptr = coef_block; + quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; + wsptr = workspace; + for (ctr = DCTSIZE; ctr > 0; ctr--) { + /* Due to quantization, we will usually find that many of the input + * coefficients are zero, especially the AC terms. We can exploit this + * by short-circuiting the IDCT calculation for any column in which all + * the AC terms are zero. In that case each output is equal to the + * DC coefficient (with scale factor as needed). + * With typical images and quantization tables, half or more of the + * column DCT calculations can be simplified this way. + */ + + if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && + inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && + inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && + inptr[DCTSIZE*7] == 0) { + /* AC terms all zero */ + FAST_FLOAT dcval = DETQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); + + wsptr[DCTSIZE*0] = dcval; + wsptr[DCTSIZE*1] = dcval; + wsptr[DCTSIZE*2] = dcval; + wsptr[DCTSIZE*3] = dcval; + wsptr[DCTSIZE*4] = dcval; + wsptr[DCTSIZE*5] = dcval; + wsptr[DCTSIZE*6] = dcval; + wsptr[DCTSIZE*7] = dcval; + + inptr++; /* advance pointers to next column */ + quantptr++; + wsptr++; + continue; + } + + /* Even part */ + + tmp0 = DETQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); + tmp1 = DETQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); + tmp2 = DETQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); + tmp3 = DETQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); + + tmp10 = tmp0 + tmp2; /* phase 3 */ + tmp11 = tmp0 - tmp2; + + tmp13 = tmp1 + tmp3; /* phases 5-3 */ + tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ + + tmp0 = tmp10 + tmp13; /* phase 2 */ + tmp3 = tmp10 - tmp13; + tmp1 = tmp11 + tmp12; + tmp2 = tmp11 - tmp12; + + /* Odd part */ + + tmp4 = DETQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); + tmp5 = DETQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); + tmp6 = DETQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); + tmp7 = DETQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); + + z13 = tmp6 + tmp5; /* phase 6 */ + z10 = tmp6 - tmp5; + z11 = tmp4 + tmp7; + z12 = tmp4 - tmp7; + + tmp7 = z11 + z13; /* phase 5 */ + tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ + + z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ + tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ + tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ + + tmp6 = tmp12 - tmp7; /* phase 2 */ + tmp5 = tmp11 - tmp6; + tmp4 = tmp10 + tmp5; + + wsptr[DCTSIZE*0] = tmp0 + tmp7; + wsptr[DCTSIZE*7] = tmp0 - tmp7; + wsptr[DCTSIZE*1] = tmp1 + tmp6; + wsptr[DCTSIZE*6] = tmp1 - tmp6; + wsptr[DCTSIZE*2] = tmp2 + tmp5; + wsptr[DCTSIZE*5] = tmp2 - tmp5; + wsptr[DCTSIZE*4] = tmp3 + tmp4; + wsptr[DCTSIZE*3] = tmp3 - tmp4; + + inptr++; /* advance pointers to next column */ + quantptr++; + wsptr++; + } + + /* Pass 2: process rows from work array, store into output array. */ + /* Note that we must descale the results by a factor of 8 == 2**3. */ + + wsptr = workspace; + for (ctr = 0; ctr < DCTSIZE; ctr++) { + outptr = output_buf[ctr] + output_col; + /* Rows of zeroes can be exploited in the same way as we did with columns. + * However, the column calculation has created many nonzero AC terms, so + * the simplification applies less often (typically 5% to 10% of the time). + * And testing floats for zero is relatively expensive, so we don't bother. + */ + + /* Even part */ + + tmp10 = wsptr[0] + wsptr[4]; + tmp11 = wsptr[0] - wsptr[4]; + + tmp13 = wsptr[2] + wsptr[6]; + tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; + + tmp0 = tmp10 + tmp13; + tmp3 = tmp10 - tmp13; + tmp1 = tmp11 + tmp12; + tmp2 = tmp11 - tmp12; + + /* Odd part */ + + z13 = wsptr[5] + wsptr[3]; + z10 = wsptr[5] - wsptr[3]; + z11 = wsptr[1] + wsptr[7]; + z12 = wsptr[1] - wsptr[7]; + + tmp7 = z11 + z13; + tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); + + z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ + tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ + tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ + + tmp6 = tmp12 - tmp7; + tmp5 = tmp11 - tmp6; + tmp4 = tmp10 + tmp5; + + /* Final output stage: scale down by a factor of 8 and range-limit */ + + outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) + & RANGE_MASK]; + outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) + & RANGE_MASK]; + outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) + & RANGE_MASK]; + outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) + & RANGE_MASK]; + outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) + & RANGE_MASK]; + outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) + & RANGE_MASK]; + outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) + & RANGE_MASK]; + outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3) + & RANGE_MASK]; + + wsptr += DCTSIZE; /* advance pointer to next row */ + } +} + +#endif /* DCT_FLOAT_SUPPORTED */ |