1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
|
/****************************************************************************
**
** Implementation of TQRegExp class
**
** Created : 950126
**
** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved.
**
** This file is part of the tools module of the TQt GUI Toolkit.
**
** This file may be used under the terms of the GNU General
** Public License versions 2.0 or 3.0 as published by the Free
** Software Foundation and appearing in the files LICENSE.GPL2
** and LICENSE.GPL3 included in the packaging of this file.
** Alternatively you may (at your option) use any later version
** of the GNU General Public License if such license has been
** publicly approved by Trolltech ASA (or its successors, if any)
** and the KDE Free TQt Foundation.
**
** Please review the following information to ensure GNU General
** Public Licensing requirements will be met:
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
** If you are unsure which license is appropriate for your use, please
** review the following information:
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
** or contact the sales department at [email protected].
**
** This file may be used under the terms of the Q Public License as
** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
** included in the packaging of this file. Licensees holding valid TQt
** Commercial licenses may use this file in accordance with the TQt
** Commercial License Agreement provided with the Software.
**
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
** herein.
**
**********************************************************************/
#include "ntqregexp.h"
#ifndef TQT_NO_REGEXP
#include "ntqmemarray.h"
#include "ntqbitarray.h"
#include "ntqcache.h"
#include "ntqcleanuphandler.h"
#include "ntqintdict.h"
#include "tqmap.h"
#include "ntqptrvector.h"
#include "ntqstring.h"
#include "ntqtl.h"
#ifdef TQT_THREAD_SUPPORT
#include "ntqthreadstorage.h"
#include <private/qthreadinstance_p.h>
#endif // TQT_THREAD_SUPPORT
#undef TQT_TRANSLATE_NOOP
#define TQT_TRANSLATE_NOOP( context, sourceText ) sourceText
#include <limits.h>
// error strings for the regexp parser
#define RXERR_OK TQT_TRANSLATE_NOOP( "TQRegExp", "no error occurred" )
#define RXERR_DISABLED TQT_TRANSLATE_NOOP( "TQRegExp", "disabled feature used" )
#define RXERR_CHARCLASS TQT_TRANSLATE_NOOP( "TQRegExp", "bad char class syntax" )
#define RXERR_LOOKAHEAD TQT_TRANSLATE_NOOP( "TQRegExp", "bad lookahead syntax" )
#define RXERR_REPETITION TQT_TRANSLATE_NOOP( "TQRegExp", "bad repetition syntax" )
#define RXERR_OCTAL TQT_TRANSLATE_NOOP( "TQRegExp", "invalid octal value" )
#define RXERR_LEFTDELIM TQT_TRANSLATE_NOOP( "TQRegExp", "missing left delim" )
#define RXERR_END TQT_TRANSLATE_NOOP( "TQRegExp", "unexpected end" )
#define RXERR_LIMIT TQT_TRANSLATE_NOOP( "TQRegExp", "met internal limit" )
/*
WARNING! Be sure to read qregexp.tex before modifying this file.
*/
/*!
\class TQRegExp ntqregexp.h
\reentrant
\brief The TQRegExp class provides pattern matching using regular expressions.
\ingroup tools
\ingroup misc
\ingroup shared
\mainclass
\keyword regular expression
Regular expressions, or "regexps", provide a way to find patterns
within text. This is useful in many contexts, for example:
\table
\row \i Validation
\i A regexp can be used to check whether a piece of text
meets some criteria, e.g. is an integer or contains no
whitespace.
\row \i Searching
\i Regexps provide a much more powerful means of searching
text than simple string matching does. For example we can
create a regexp which says "find one of the words 'mail',
'letter' or 'correspondence' but not any of the words
'email', 'mailman' 'mailer', 'letterbox' etc."
\row \i Search and Replace
\i A regexp can be used to replace a pattern with a piece of
text, for example replace all occurrences of '&' with
'\&' except where the '&' is already followed by 'amp;'.
\row \i String Splitting
\i A regexp can be used to identify where a string should be
split into its component fields, e.g. splitting tab-delimited
strings.
\endtable
We present a very brief introduction to regexps, a description of
TQt's regexp language, some code examples, and finally the function
documentation itself. TQRegExp is modeled on Perl's regexp
language, and also fully supports Unicode. TQRegExp can also be
used in the weaker 'wildcard' (globbing) mode which works in a
similar way to command shells. A good text on regexps is \e
{Mastering Regular Expressions: Powerful Techniques for Perl and
Other Tools} by Jeffrey E. Friedl, ISBN 1565922573.
Experienced regexp users may prefer to skip the introduction and
go directly to the relevant information.
In case of multi-threaded programming, note that TQRegExp depends on
TQThreadStorage internally. For that reason, TQRegExp should only be
used with threads started with TQThread, i.e. not with threads
started with platform-specific APIs.
\tableofcontents
\section1 Introduction
Regexps are built up from expressions, quantifiers, and assertions.
The simplest form of expression is simply a character, e.g.
<b>x</b> or <b>5</b>. An expression can also be a set of
characters. For example, <b>[ABCD]</b>, will match an <b>A</b> or
a <b>B</b> or a <b>C</b> or a <b>D</b>. As a shorthand we could
write this as <b>[A-D]</b>. If we want to match any of the
captital letters in the English alphabet we can write
<b>[A-Z]</b>. A quantifier tells the regexp engine how many
occurrences of the expression we want, e.g. <b>x{1,1}</b> means
match an <b>x</b> which occurs at least once and at most once.
We'll look at assertions and more complex expressions later.
Note that in general regexps cannot be used to check for balanced
brackets or tags. For example if you want to match an opening html
\c <b> and its closing \c </b> you can only use a regexp if you
know that these tags are not nested; the html fragment, \c{<b>bold
<b>bolder</b></b>} will not match as expected. If you know the
maximum level of nesting it is possible to create a regexp that
will match correctly, but for an unknown level of nesting, regexps
will fail.
We'll start by writing a regexp to match integers in the range 0
to 99. We will require at least one digit so we will start with
<b>[0-9]{1,1}</b> which means match a digit exactly once. This
regexp alone will match integers in the range 0 to 9. To match one
or two digits we can increase the maximum number of occurrences so
the regexp becomes <b>[0-9]{1,2}</b> meaning match a digit at
least once and at most twice. However, this regexp as it stands
will not match correctly. This regexp will match one or two digits
\e within a string. To ensure that we match against the whole
string we must use the anchor assertions. We need <b>^</b> (caret)
which when it is the first character in the regexp means that the
regexp must match from the beginning of the string. And we also
need <b>$</b> (dollar) which when it is the last character in the
regexp means that the regexp must match until the end of the
string. So now our regexp is <b>^[0-9]{1,2}$</b>. Note that
assertions, such as <b>^</b> and <b>$</b>, do not match any
characters.
If you've seen regexps elsewhere they may have looked different from
the ones above. This is because some sets of characters and some
quantifiers are so common that they have special symbols to
represent them. <b>[0-9]</b> can be replaced with the symbol
<b>\d</b>. The quantifier to match exactly one occurrence,
<b>{1,1}</b>, can be replaced with the expression itself. This means
that <b>x{1,1}</b> is exactly the same as <b>x</b> alone. So our 0
to 99 matcher could be written <b>^\d{1,2}$</b>. Another way of
writing it would be <b>^\d\d{0,1}$</b>, i.e. from the start of the
string match a digit followed by zero or one digits. In practice
most people would write it <b>^\d\d?$</b>. The <b>?</b> is a
shorthand for the quantifier <b>{0,1}</b>, i.e. a minimum of no
occurrences a maximum of one occurrence. This is used to make an
expression optional. The regexp <b>^\d\d?$</b> means "from the
beginning of the string match one digit followed by zero or one
digits and then the end of the string".
Our second example is matching the words 'mail', 'letter' or
'correspondence' but without matching 'email', 'mailman',
'mailer', 'letterbox' etc. We'll start by just matching 'mail'. In
full the regexp is, <b>m{1,1}a{1,1}i{1,1}l{1,1}</b>, but since
each expression itself is automatically quantified by <b>{1,1}</b>
we can simply write this as <b>mail</b>; an 'm' followed by an 'a'
followed by an 'i' followed by an 'l'. The symbol '|' (bar) is
used for \e alternation, so our regexp now becomes
<b>mail|letter|correspondence</b> which means match 'mail' \e or
'letter' \e or 'correspondence'. Whilst this regexp will find the
words we want it will also find words we don't want such as
'email'. We will start by putting our regexp in parentheses,
<b>(mail|letter|correspondence)</b>. Parentheses have two effects,
firstly they group expressions together and secondly they identify
parts of the regexp that we wish to \link #capturing-text capture
\endlink. Our regexp still matches any of the three words but now
they are grouped together as a unit. This is useful for building
up more complex regexps. It is also useful because it allows us to
examine which of the words actually matched. We need to use
another assertion, this time <b>\b</b> "word boundary":
<b>\b(mail|letter|correspondence)\b</b>. This regexp means "match
a word boundary followed by the expression in parentheses followed
by another word boundary". The <b>\b</b> assertion matches at a \e
position in the regexp not a \e character in the regexp. A word
boundary is any non-word character such as a space a newline or
the beginning or end of the string.
For our third example we want to replace ampersands with the HTML
entity '\&'. The regexp to match is simple: <b>\&</b>, i.e.
match one ampersand. Unfortunately this will mess up our text if
some of the ampersands have already been turned into HTML
entities. So what we really want to say is replace an ampersand
providing it is not followed by 'amp;'. For this we need the
negative lookahead assertion and our regexp becomes:
<b>\&(?!amp;)</b>. The negative lookahead assertion is introduced
with '(?!' and finishes at the ')'. It means that the text it
contains, 'amp;' in our example, must \e not follow the expression
that preceeds it.
Regexps provide a rich language that can be used in a variety of
ways. For example suppose we want to count all the occurrences of
'Eric' and 'Eirik' in a string. Two valid regexps to match these
are <b>\\b(Eric|Eirik)\\b</b> and <b>\\bEi?ri[ck]\\b</b>. We need
the word boundary '\b' so we don't get 'Ericsson' etc. The second
regexp actually matches more than we want, 'Eric', 'Erik', 'Eiric'
and 'Eirik'.
We will implement some the examples above in the
\link #code-examples code examples \endlink section.
\target characters-and-abbreviations-for-sets-of-characters
\section1 Characters and Abbreviations for Sets of Characters
\table
\header \i Element \i Meaning
\row \i <b>c</b>
\i Any character represents itself unless it has a special
regexp meaning. Thus <b>c</b> matches the character \e c.
\row \i <b>\\c</b>
\i A character that follows a backslash matches the character
itself except where mentioned below. For example if you
wished to match a literal caret at the beginning of a string
you would write <b>\^</b>.
\row \i <b>\\a</b>
\i This matches the ASCII bell character (BEL, 0x07).
\row \i <b>\\f</b>
\i This matches the ASCII form feed character (FF, 0x0C).
\row \i <b>\\n</b>
\i This matches the ASCII line feed character (LF, 0x0A, Unix newline).
\row \i <b>\\r</b>
\i This matches the ASCII carriage return character (CR, 0x0D).
\row \i <b>\\t</b>
\i This matches the ASCII horizontal tab character (HT, 0x09).
\row \i <b>\\v</b>
\i This matches the ASCII vertical tab character (VT, 0x0B).
\row \i <b>\\xhhhh</b>
\i This matches the Unicode character corresponding to the
hexadecimal number hhhh (between 0x0000 and 0xFFFF). \0ooo
(i.e., \zero ooo) matches the ASCII/Latin-1 character
corresponding to the octal number ooo (between 0 and 0377).
\row \i <b>. (dot)</b>
\i This matches any character (including newline).
\row \i <b>\\d</b>
\i This matches a digit (TQChar::isDigit()).
\row \i <b>\\D</b>
\i This matches a non-digit.
\row \i <b>\\s</b>
\i This matches a whitespace (TQChar::isSpace()).
\row \i <b>\\S</b>
\i This matches a non-whitespace.
\row \i <b>\\w</b>
\i This matches a word character (TQChar::isLetterOrNumber() or '_').
\row \i <b>\\W</b>
\i This matches a non-word character.
\row \i <b>\\n</b>
\i The n-th \link #capturing-text backreference \endlink,
e.g. \1, \2, etc.
\endtable
\e {Note that the C++ compiler transforms backslashes in strings
so to include a <b>\\</b> in a regexp you will need to enter it
twice, i.e. <b>\\\\</b>.}
\target sets-of-characters
\section1 Sets of Characters
Square brackets are used to match any character in the set of
characters contained within the square brackets. All the character
set abbreviations described above can be used within square
brackets. Apart from the character set abbreviations and the
following two exceptions no characters have special meanings in
square brackets.
\table
\row \i <b>^</b>
\i The caret negates the character set if it occurs as the
first character, i.e. immediately after the opening square
bracket. For example, <b>[abc]</b> matches 'a' or 'b' or 'c',
but <b>[^abc]</b> matches anything \e except 'a' or 'b' or
'c'.
\row \i <b>-</b>
\i The dash is used to indicate a range of characters, for
example <b>[W-Z]</b> matches 'W' or 'X' or 'Y' or 'Z'.
\endtable
Using the predefined character set abbreviations is more portable
than using character ranges across platforms and languages. For
example, <b>[0-9]</b> matches a digit in Western alphabets but
<b>\d</b> matches a digit in \e any alphabet.
Note that in most regexp literature sets of characters are called
"character classes".
\target quantifiers
\section1 Quantifiers
By default an expression is automatically quantified by
<b>{1,1}</b>, i.e. it should occur exactly once. In the following
list <b>\e {E}</b> stands for any expression. An expression is a
character or an abbreviation for a set of characters or a set of
characters in square brackets or any parenthesised expression.
\table
\row \i <b>\e {E}?</b>
\i Matches zero or one occurrence of \e E. This quantifier
means "the previous expression is optional" since it will
match whether or not the expression occurs in the string. It
is the same as <b>\e {E}{0,1}</b>. For example <b>dents?</b>
will match 'dent' and 'dents'.
\row \i <b>\e {E}+</b>
\i Matches one or more occurrences of \e E. This is the same
as <b>\e {E}{1,MAXINT}</b>. For example, <b>0+</b> will match
'0', '00', '000', etc.
\row \i <b>\e {E}*</b>
\i Matches zero or more occurrences of \e E. This is the same
as <b>\e {E}{0,MAXINT}</b>. The <b>*</b> quantifier is often
used by a mistake. Since it matches \e zero or more
occurrences it will match no occurrences at all. For example
if we want to match strings that end in whitespace and use
the regexp <b>\s*$</b> we would get a match on every string.
This is because we have said find zero or more whitespace
followed by the end of string, so even strings that don't end
in whitespace will match. The regexp we want in this case is
<b>\s+$</b> to match strings that have at least one
whitespace at the end.
\row \i <b>\e {E}{n}</b>
\i Matches exactly \e n occurrences of the expression. This
is the same as repeating the expression \e n times. For
example, <b>x{5}</b> is the same as <b>xxxxx</b>. It is also
the same as <b>\e {E}{n,n}</b>, e.g. <b>x{5,5}</b>.
\row \i <b>\e {E}{n,}</b>
\i Matches at least \e n occurrences of the expression. This
is the same as <b>\e {E}{n,MAXINT}</b>.
\row \i <b>\e {E}{,m}</b>
\i Matches at most \e m occurrences of the expression. This
is the same as <b>\e {E}{0,m}</b>.
\row \i <b>\e {E}{n,m}</b>
\i Matches at least \e n occurrences of the expression and at
most \e m occurrences of the expression.
\endtable
(MAXINT is implementation dependent but will not be smaller than
1024.)
If we wish to apply a quantifier to more than just the preceding
character we can use parentheses to group characters together in
an expression. For example, <b>tag+</b> matches a 't' followed by
an 'a' followed by at least one 'g', whereas <b>(tag)+</b> matches
at least one occurrence of 'tag'.
Note that quantifiers are "greedy". They will match as much text
as they can. For example, <b>0+</b> will match as many zeros as it
can from the first zero it finds, e.g. '2.<u>000</u>5'.
Quantifiers can be made non-greedy, see setMinimal().
\target capturing-text
\section1 Capturing Text
Parentheses allow us to group elements together so that we can
quantify and capture them. For example if we have the expression
<b>mail|letter|correspondence</b> that matches a string we know
that \e one of the words matched but not which one. Using
parentheses allows us to "capture" whatever is matched within
their bounds, so if we used <b>(mail|letter|correspondence)</b>
and matched this regexp against the string "I sent you some email"
we can use the cap() or capturedTexts() functions to extract the
matched characters, in this case 'mail'.
We can use captured text within the regexp itself. To refer to the
captured text we use \e backreferences which are indexed from 1,
the same as for cap(). For example we could search for duplicate
words in a string using <b>\b(\w+)\W+\1\b</b> which means match a
word boundary followed by one or more word characters followed by
one or more non-word characters followed by the same text as the
first parenthesised expression followed by a word boundary.
If we want to use parentheses purely for grouping and not for
capturing we can use the non-capturing syntax, e.g.
<b>(?:green|blue)</b>. Non-capturing parentheses begin '(?:' and
end ')'. In this example we match either 'green' or 'blue' but we
do not capture the match so we only know whether or not we matched
but not which color we actually found. Using non-capturing
parentheses is more efficient than using capturing parentheses
since the regexp engine has to do less book-keeping.
Both capturing and non-capturing parentheses may be nested.
\target assertions
\section1 Assertions
Assertions make some statement about the text at the point where
they occur in the regexp but they do not match any characters. In
the following list <b>\e {E}</b> stands for any expression.
\table
\row \i <b>^</b>
\i The caret signifies the beginning of the string. If you
wish to match a literal \c{^} you must escape it by
writing <b>\^</b>. For example, <b>^#include</b> will only
match strings which \e begin with the characters '#include'.
(When the caret is the first character of a character set it
has a special meaning, see \link #sets-of-characters Sets of
Characters \endlink.)
\row \i <b>$</b>
\i The dollar signifies the end of the string. For example
<b>\d\s*$</b> will match strings which end with a digit
optionally followed by whitespace. If you wish to match a
literal \c{$} you must escape it by writing
<b>\$</b>.
\row \i <b>\\b</b>
\i A word boundary. For example the regexp
<b>\\bOK\\b</b> means match immediately after a word
boundary (e.g. start of string or whitespace) the letter 'O'
then the letter 'K' immediately before another word boundary
(e.g. end of string or whitespace). But note that the
assertion does not actually match any whitespace so if we
write <b>(\\bOK\\b)</b> and we have a match it will only
contain 'OK' even if the string is "Its <u>OK</u> now".
\row \i <b>\\B</b>
\i A non-word boundary. This assertion is true wherever
<b>\\b</b> is false. For example if we searched for
<b>\\Bon\\B</b> in "Left on" the match would fail (space
and end of string aren't non-word boundaries), but it would
match in "t<u>on</u>ne".
\row \i <b>(?=\e E)</b>
\i Positive lookahead. This assertion is true if the
expression matches at this point in the regexp. For example,
<b>const(?=\\s+char)</b> matches 'const' whenever it is
followed by 'char', as in 'static <u>const</u> char *'.
(Compare with <b>const\\s+char</b>, which matches 'static
<u>const char</u> *'.)
\row \i <b>(?!\e E)</b>
\i Negative lookahead. This assertion is true if the
expression does not match at this point in the regexp. For
example, <b>const(?!\\s+char)</b> matches 'const' \e except
when it is followed by 'char'.
\endtable
\target wildcard-matching
\section1 Wildcard Matching (globbing)
Most command shells such as \e bash or \e cmd.exe support "file
globbing", the ability to identify a group of files by using
wildcards. The setWildcard() function is used to switch between
regexp and wildcard mode. Wildcard matching is much simpler than
full regexps and has only four features:
\table
\row \i <b>c</b>
\i Any character represents itself apart from those mentioned
below. Thus <b>c</b> matches the character \e c.
\row \i <b>?</b>
\i This matches any single character. It is the same as
<b>.</b> in full regexps.
\row \i <b>*</b>
\i This matches zero or more of any characters. It is the
same as <b>.*</b> in full regexps.
\row \i <b>[...]</b>
\i Sets of characters can be represented in square brackets,
similar to full regexps. Within the character class, like
outside, backslash has no special meaning.
\endtable
For example if we are in wildcard mode and have strings which
contain filenames we could identify HTML files with <b>*.html</b>.
This will match zero or more characters followed by a dot followed
by 'h', 't', 'm' and 'l'.
\target perl-users
\section1 Notes for Perl Users
Most of the character class abbreviations supported by Perl are
supported by TQRegExp, see \link
#characters-and-abbreviations-for-sets-of-characters characters
and abbreviations for sets of characters \endlink.
In TQRegExp, apart from within character classes, \c{^} always
signifies the start of the string, so carets must always be
escaped unless used for that purpose. In Perl the meaning of caret
varies automagically depending on where it occurs so escaping it
is rarely necessary. The same applies to \c{$} which in
TQRegExp always signifies the end of the string.
TQRegExp's quantifiers are the same as Perl's greedy quantifiers.
Non-greedy matching cannot be applied to individual quantifiers,
but can be applied to all the quantifiers in the pattern. For
example, to match the Perl regexp <b>ro+?m</b> requires:
\code
TQRegExp rx( "ro+m" );
rx.setMinimal( TRUE );
\endcode
The equivalent of Perl's \c{/i} option is
setCaseSensitive(FALSE).
Perl's \c{/g} option can be emulated using a \link
#cap_in_a_loop loop \endlink.
In TQRegExp <b>.</b> matches any character, therefore all TQRegExp
regexps have the equivalent of Perl's \c{/s} option. TQRegExp
does not have an equivalent to Perl's \c{/m} option, but this
can be emulated in various ways for example by splitting the input
into lines or by looping with a regexp that searches for newlines.
Because TQRegExp is string oriented there are no \A, \Z or \z
assertions. The \G assertion is not supported but can be emulated
in a loop.
Perl's $& is cap(0) or capturedTexts()[0]. There are no TQRegExp
equivalents for $`, $' or $+. Perl's capturing variables, $1, $2,
... correspond to cap(1) or capturedTexts()[1], cap(2) or
capturedTexts()[2], etc.
To substitute a pattern use TQString::replace().
Perl's extended \c{/x} syntax is not supported, nor are
directives, e.g. (?i), or regexp comments, e.g. (?#comment). On
the other hand, C++'s rules for literal strings can be used to
achieve the same:
\code
TQRegExp mark( "\\b" // word boundary
"[Mm]ark" // the word we want to match
);
\endcode
Both zero-width positive and zero-width negative lookahead
assertions (?=pattern) and (?!pattern) are supported with the same
syntax as Perl. Perl's lookbehind assertions, "independent"
subexpressions and conditional expressions are not supported.
Non-capturing parentheses are also supported, with the same
(?:pattern) syntax.
See TQStringList::split() and TQStringList::join() for equivalents
to Perl's split and join functions.
Note: because C++ transforms \\'s they must be written \e twice in
code, e.g. <b>\\b</b> must be written <b>\\\\b</b>.
\target code-examples
\section1 Code Examples
\code
TQRegExp rx( "^\\d\\d?$" ); // match integers 0 to 99
rx.search( "123" ); // returns -1 (no match)
rx.search( "-6" ); // returns -1 (no match)
rx.search( "6" ); // returns 0 (matched as position 0)
\endcode
The third string matches '<u>6</u>'. This is a simple validation
regexp for integers in the range 0 to 99.
\code
TQRegExp rx( "^\\S+$" ); // match strings without whitespace
rx.search( "Hello world" ); // returns -1 (no match)
rx.search( "This_is-OK" ); // returns 0 (matched at position 0)
\endcode
The second string matches '<u>This_is-OK</u>'. We've used the
character set abbreviation '\S' (non-whitespace) and the anchors
to match strings which contain no whitespace.
In the following example we match strings containing 'mail' or
'letter' or 'correspondence' but only match whole words i.e. not
'email'
\code
TQRegExp rx( "\\b(mail|letter|correspondence)\\b" );
rx.search( "I sent you an email" ); // returns -1 (no match)
rx.search( "Please write the letter" ); // returns 17
\endcode
The second string matches "Please write the <u>letter</u>". The
word 'letter' is also captured (because of the parentheses). We
can see what text we've captured like this:
\code
TQString captured = rx.cap( 1 ); // captured == "letter"
\endcode
This will capture the text from the first set of capturing
parentheses (counting capturing left parentheses from left to
right). The parentheses are counted from 1 since cap( 0 ) is the
whole matched regexp (equivalent to '&' in most regexp engines).
\code
TQRegExp rx( "&(?!amp;)" ); // match ampersands but not &
TQString line1 = "This & that";
line1.replace( rx, "&" );
// line1 == "This & that"
TQString line2 = "His & hers & theirs";
line2.replace( rx, "&" );
// line2 == "His & hers & theirs"
\endcode
Here we've passed the TQRegExp to TQString's replace() function to
replace the matched text with new text.
\code
TQString str = "One Eric another Eirik, and an Ericsson."
" How many Eiriks, Eric?";
TQRegExp rx( "\\b(Eric|Eirik)\\b" ); // match Eric or Eirik
int pos = 0; // where we are in the string
int count = 0; // how many Eric and Eirik's we've counted
while ( pos >= 0 ) {
pos = rx.search( str, pos );
if ( pos >= 0 ) {
pos++; // move along in str
count++; // count our Eric or Eirik
}
}
\endcode
We've used the search() function to repeatedly match the regexp in
the string. Note that instead of moving forward by one character
at a time \c pos++ we could have written \c {pos +=
rx.matchedLength()} to skip over the already matched string. The
count will equal 3, matching 'One <u>Eric</u> another
<u>Eirik</u>, and an Ericsson. How many Eiriks, <u>Eric</u>?'; it
doesn't match 'Ericsson' or 'Eiriks' because they are not bounded
by non-word boundaries.
One common use of regexps is to split lines of delimited data into
their component fields.
\code
str = "Trolltech AS\twww.trolltech.com\tNorway";
TQString company, web, country;
rx.setPattern( "^([^\t]+)\t([^\t]+)\t([^\t]+)$" );
if ( rx.search( str ) != -1 ) {
company = rx.cap( 1 );
web = rx.cap( 2 );
country = rx.cap( 3 );
}
\endcode
In this example our input lines have the format company name, web
address and country. Unfortunately the regexp is rather long and
not very versatile -- the code will break if we add any more
fields. A simpler and better solution is to look for the
separator, '\t' in this case, and take the surrounding text. The
TQStringList split() function can take a separator string or regexp
as an argument and split a string accordingly.
\code
TQStringList field = TQStringList::split( "\t", str );
\endcode
Here field[0] is the company, field[1] the web address and so on.
To imitate the matching of a shell we can use wildcard mode.
\code
TQRegExp rx( "*.html" ); // invalid regexp: * doesn't quantify anything
rx.setWildcard( TRUE ); // now it's a valid wildcard regexp
rx.exactMatch( "index.html" ); // returns TRUE
rx.exactMatch( "default.htm" ); // returns FALSE
rx.exactMatch( "readme.txt" ); // returns FALSE
\endcode
Wildcard matching can be convenient because of its simplicity, but
any wildcard regexp can be defined using full regexps, e.g.
<b>.*\.html$</b>. Notice that we can't match both \c .html and \c
.htm files with a wildcard unless we use <b>*.htm*</b> which will
also match 'test.html.bak'. A full regexp gives us the precision
we need, <b>.*\\.html?$</b>.
TQRegExp can match case insensitively using setCaseSensitive(), and
can use non-greedy matching, see setMinimal(). By default TQRegExp
uses full regexps but this can be changed with setWildcard().
Searching can be forward with search() or backward with
searchRev(). Captured text can be accessed using capturedTexts()
which returns a string list of all captured strings, or using
cap() which returns the captured string for the given index. The
pos() function takes a match index and returns the position in the
string where the match was made (or -1 if there was no match).
\sa TQRegExpValidator TQString TQStringList
\target member-function-documentation
*/
const int NumBadChars = 64;
#define BadChar( ch ) ( (ch).unicode() % NumBadChars )
const int NoOccurrence = INT_MAX;
const int EmptyCapture = INT_MAX;
const int InftyLen = INT_MAX;
const int InftyRep = 1025;
const int EOS = -1;
static bool isWord( TQChar ch )
{
return ch.isLetterOrNumber() || ch == TQChar( '_' );
}
/*
Merges two TQMemArrays of ints and puts the result into the first
one.
*/
static void mergeInto( TQMemArray<int> *a, const TQMemArray<int>& b )
{
int asize = a->size();
int bsize = b.size();
if ( asize == 0 ) {
*a = b.copy();
#ifndef TQT_NO_REGEXP_OPTIM
} else if ( bsize == 1 && (*a)[asize - 1] < b[0] ) {
a->resize( asize + 1 );
(*a)[asize] = b[0];
#endif
} else if ( bsize >= 1 ) {
int csize = asize + bsize;
TQMemArray<int> c( csize );
int i = 0, j = 0, k = 0;
while ( i < asize ) {
if ( j < bsize ) {
if ( (*a)[i] == b[j] ) {
i++;
csize--;
} else if ( (*a)[i] < b[j] ) {
c[k++] = (*a)[i++];
} else {
c[k++] = b[j++];
}
} else {
memcpy( c.data() + k, (*a).data() + i,
(asize - i) * sizeof(int) );
break;
}
}
c.resize( csize );
if ( j < bsize )
memcpy( c.data() + k, b.data() + j, (bsize - j) * sizeof(int) );
*a = c;
}
}
/*
Merges two disjoint TQMaps of (int, int) pairs and puts the result
into the first one.
*/
static void mergeInto( TQMap<int, int> *a, const TQMap<int, int>& b )
{
TQMap<int, int>::ConstIterator it;
for ( it = b.begin(); it != b.end(); ++it )
a->insert( it.key(), *it );
}
/*
Returns the value associated to key k in TQMap m of (int, int)
pairs, or 0 if no such value is explicitly present.
*/
static int at( const TQMap<int, int>& m, int k )
{
TQMap<int, int>::ConstIterator it = m.find( k );
if ( it == m.end() )
return 0;
else
return *it;
}
#ifndef TQT_NO_REGEXP_WILDCARD
/*
Translates a wildcard pattern to an equivalent regular expression
pattern (e.g., *.cpp to .*\.cpp).
*/
static TQString wc2rx( const TQString& wc_str )
{
int wclen = wc_str.length();
TQString rx = TQString::fromLatin1( "" );
int i = 0;
const TQChar *wc = wc_str.unicode();
while ( i < wclen ) {
TQChar c = wc[i++];
switch ( c.unicode() ) {
case '*':
rx += TQString::fromLatin1( ".*" );
break;
case '?':
rx += TQChar( '.' );
break;
case '$':
case '(':
case ')':
case '+':
case '.':
case '\\':
case '^':
case '{':
case '|':
case '}':
rx += TQChar( '\\' );
rx += c;
break;
case '[':
rx += c;
if ( wc[i] == TQChar('^') )
rx += wc[i++];
if ( i < wclen ) {
if ( rx[i] == ']' )
rx += wc[i++];
while ( i < wclen && wc[i] != TQChar(']') ) {
if ( wc[i] == '\\' )
rx += TQChar( '\\' );
rx += wc[i++];
}
}
break;
default:
rx += c;
}
}
return rx;
}
#endif
/*
The class TQRegExpEngine encapsulates a modified nondeterministic
finite automaton (NFA).
*/
class TQRegExpEngine : public TQShared
{
public:
#ifndef TQT_NO_REGEXP_CCLASS
/*
The class CharClass represents a set of characters, such as can
be found in regular expressions (e.g., [a-z] denotes the set
{a, b, ..., z}).
*/
class CharClass
{
public:
CharClass();
CharClass( const CharClass& cc ) { operator=( cc ); }
CharClass& operator=( const CharClass& cc );
void clear();
bool negative() const { return n; }
void setNegative( bool negative );
void addCategories( int cats );
void addRange( ushort from, ushort to );
void addSingleton( ushort ch ) { addRange( ch, ch ); }
bool in( TQChar ch ) const;
#ifndef TQT_NO_REGEXP_OPTIM
const TQMemArray<int>& firstOccurrence() const { return occ1; }
#endif
#if defined(QT_DEBUG)
void dump() const;
#endif
private:
/*
The struct Range represents a range of characters (e.g.,
[0-9] denotes range 48 to 57).
*/
struct Range
{
ushort from; // 48
ushort to; // 57
};
int c; // character classes
TQMemArray<Range> r; // character ranges
bool n; // negative?
#ifndef TQT_NO_REGEXP_OPTIM
TQMemArray<int> occ1; // first-occurrence array
#endif
};
#else
struct CharClass
{
int dummy;
#ifndef TQT_NO_REGEXP_OPTIM
CharClass() { occ1.fill( 0, NumBadChars ); }
const TQMemArray<int>& firstOccurrence() const { return occ1; }
TQMemArray<int> occ1;
#endif
};
#endif
TQRegExpEngine( bool caseSensitive ) { setup( caseSensitive ); }
TQRegExpEngine( const TQString& rx, bool caseSensitive );
#ifndef TQT_NO_REGEXP_OPTIM
~TQRegExpEngine();
#endif
bool isValid() const { return valid; }
bool caseSensitive() const { return cs; }
const TQString& errorString() const { return yyError; }
int numCaptures() const { return officialncap; }
void match( const TQString& str, int pos, bool minimal, bool oneTest,
int caretIndex, TQMemArray<int>& captured );
int partialMatchLength() const { return mmOneTestMatchedLen; }
int createState( TQChar ch );
int createState( const CharClass& cc );
#ifndef TQT_NO_REGEXP_BACKREF
int createState( int bref );
#endif
void addCatTransitions( const TQMemArray<int>& from,
const TQMemArray<int>& to );
#ifndef TQT_NO_REGEXP_CAPTURE
void addPlusTransitions( const TQMemArray<int>& from,
const TQMemArray<int>& to, int atom );
#endif
#ifndef TQT_NO_REGEXP_ANCHOR_ALT
int anchorAlternation( int a, int b );
int anchorConcatenation( int a, int b );
#else
int anchorAlternation( int a, int b ) { return a & b; }
int anchorConcatenation( int a, int b ) { return a | b; }
#endif
void addAnchors( int from, int to, int a );
#ifndef TQT_NO_REGEXP_OPTIM
void heuristicallyChooseHeuristic();
#endif
#if defined(QT_DEBUG)
void dump() const;
#endif
private:
enum { CharClassBit = 0x10000, BackRefBit = 0x20000 };
/*
The struct State represents one state in a modified NFA. The
input characters matched are stored in the state instead of on
the transitions, something possible for an automaton
constructed from a regular expression.
*/
struct State
{
#ifndef TQT_NO_REGEXP_CAPTURE
int atom; // which atom does this state belong to?
#endif
int match; // what does it match? (see CharClassBit and BackRefBit)
TQMemArray<int> outs; // out-transitions
TQMap<int, int> *reenter; // atoms reentered when transiting out
TQMap<int, int> *anchors; // anchors met when transiting out
#ifndef TQT_NO_REGEXP_CAPTURE
State( int a, int m )
: atom( a ), match( m ), reenter( 0 ), anchors( 0 ) { }
#else
State( int m )
: match( m ), reenter( 0 ), anchors( 0 ) { }
#endif
~State() { delete reenter; delete anchors; }
};
#ifndef TQT_NO_REGEXP_LOOKAHEAD
/*
The struct Lookahead represents a lookahead a la Perl (e.g.,
(?=foo) and (?!bar)).
*/
struct Lookahead
{
TQRegExpEngine *eng; // NFA representing the embedded regular expression
bool neg; // negative lookahead?
Lookahead( TQRegExpEngine *eng0, bool neg0 )
: eng( eng0 ), neg( neg0 ) { }
~Lookahead() { delete eng; }
};
#endif
#ifndef TQT_NO_REGEXP_CAPTURE
/*
The struct Atom represents one node in the hierarchy of regular
expression atoms.
*/
struct Atom
{
int parent; // index of parent in array of atoms
int capture; // index of capture, from 1 to ncap
};
#endif
#ifndef TQT_NO_REGEXP_ANCHOR_ALT
/*
The struct AnchorAlternation represents a pair of anchors with
OR semantics.
*/
struct AnchorAlternation
{
int a; // this anchor...
int b; // ...or this one
};
#endif
enum { InitialState = 0, FinalState = 1 };
void setup( bool caseSensitive );
int setupState( int match );
/*
Let's hope that 13 lookaheads and 14 back-references are
enough.
*/
enum { MaxLookaheads = 13, MaxBackRefs = 14 };
enum { Anchor_Dollar = 0x00000001, Anchor_Caret = 0x00000002,
Anchor_Word = 0x00000004, Anchor_NonWord = 0x00000008,
Anchor_FirstLookahead = 0x00000010,
Anchor_BackRef1Empty = Anchor_FirstLookahead << MaxLookaheads,
Anchor_BackRef0Empty = Anchor_BackRef1Empty >> 1,
Anchor_Alternation = Anchor_BackRef1Empty << MaxBackRefs,
Anchor_LookaheadMask = ( Anchor_FirstLookahead - 1 ) ^
( (Anchor_FirstLookahead << MaxLookaheads) - 1 ) };
#ifndef TQT_NO_REGEXP_CAPTURE
int startAtom( bool capture );
void finishAtom( int atom ) { cf = f[atom].parent; }
#endif
#ifndef TQT_NO_REGEXP_LOOKAHEAD
int addLookahead( TQRegExpEngine *eng, bool negative );
#endif
#ifndef TQT_NO_REGEXP_CAPTURE
bool isBetterCapture( const int *begin1, const int *end1, const int *begin2,
const int *end2 );
#endif
bool testAnchor( int i, int a, const int *capBegin );
#ifndef TQT_NO_REGEXP_OPTIM
bool goodStringMatch();
bool badCharMatch();
#else
bool bruteMatch();
#endif
bool matchHere();
TQPtrVector<State> s; // array of states
int ns; // number of states
#ifndef TQT_NO_REGEXP_CAPTURE
TQMemArray<Atom> f; // atom hierarchy
int nf; // number of atoms
int cf; // current atom
#endif
int officialncap; // number of captures, seen from the outside
int ncap; // number of captures, seen from the inside
#ifndef TQT_NO_REGEXP_CCLASS
TQPtrVector<CharClass> cl; // array of character classes
#endif
#ifndef TQT_NO_REGEXP_LOOKAHEAD
TQPtrVector<Lookahead> ahead; // array of lookaheads
#endif
#ifndef TQT_NO_REGEXP_ANCHOR_ALT
TQMemArray<AnchorAlternation> aa; // array of (a, b) pairs of anchors
#endif
#ifndef TQT_NO_REGEXP_OPTIM
bool caretAnchored; // does the regexp start with ^?
bool trivial; // is the good-string all that needs to match?
#endif
bool valid; // is the regular expression valid?
bool cs; // case sensitive?
#ifndef TQT_NO_REGEXP_BACKREF
int nbrefs; // number of back-references
#endif
#ifndef TQT_NO_REGEXP_OPTIM
bool useGoodStringHeuristic; // use goodStringMatch? otherwise badCharMatch
int goodEarlyStart; // the index where goodStr can first occur in a match
int goodLateStart; // the index where goodStr can last occur in a match
TQString goodStr; // the string that any match has to contain
int minl; // the minimum length of a match
TQMemArray<int> occ1; // first-occurrence array
#endif
/*
The class Box is an abstraction for a regular expression
fragment. It can also be seen as one node in the syntax tree of
a regular expression with synthetized attributes.
Its interface is ugly for performance reasons.
*/
class Box
{
public:
Box( TQRegExpEngine *engine );
Box( const Box& b ) { operator=( b ); }
Box& operator=( const Box& b );
void clear() { operator=( Box(eng) ); }
void set( TQChar ch );
void set( const CharClass& cc );
#ifndef TQT_NO_REGEXP_BACKREF
void set( int bref );
#endif
void cat( const Box& b );
void orx( const Box& b );
void plus( int atom );
void opt();
void catAnchor( int a );
#ifndef TQT_NO_REGEXP_OPTIM
void setupHeuristics();
#endif
#if defined(QT_DEBUG)
void dump() const;
#endif
private:
void addAnchorsToEngine( const Box& to ) const;
TQRegExpEngine *eng; // the automaton under construction
TQMemArray<int> ls; // the left states (firstpos)
TQMemArray<int> rs; // the right states (lastpos)
TQMap<int, int> lanchors; // the left anchors
TQMap<int, int> ranchors; // the right anchors
int skipanchors; // the anchors to match if the box is skipped
#ifndef TQT_NO_REGEXP_OPTIM
int earlyStart; // the index where str can first occur
int lateStart; // the index where str can last occur
TQString str; // a string that has to occur in any match
TQString leftStr; // a string occurring at the left of this box
TQString rightStr; // a string occurring at the right of this box
int maxl; // the maximum length of this box (possibly InftyLen)
#endif
int minl; // the minimum length of this box
#ifndef TQT_NO_REGEXP_OPTIM
TQMemArray<int> occ1; // first-occurrence array
#endif
};
friend class Box;
/*
This is the lexical analyzer for regular expressions.
*/
enum { Tok_Eos, Tok_Dollar, Tok_LeftParen, Tok_MagicLeftParen,
Tok_PosLookahead, Tok_NegLookahead, Tok_RightParen, Tok_CharClass,
Tok_Caret, Tok_Quantifier, Tok_Bar, Tok_Word, Tok_NonWord,
Tok_Char = 0x10000, Tok_BackRef = 0x20000 };
int getChar();
int getEscape();
#ifndef TQT_NO_REGEXP_INTERVAL
int getRep( int def );
#endif
#ifndef TQT_NO_REGEXP_LOOKAHEAD
void skipChars( int n );
#endif
void error( const char *msg );
void startTokenizer( const TQChar *rx, int len );
int getToken();
const TQChar *yyIn; // a pointer to the input regular expression pattern
int yyPos0; // the position of yyTok in the input pattern
int yyPos; // the position of the next character to read
int yyLen; // the length of yyIn
int yyCh; // the last character read
CharClass *yyCharClass; // attribute for Tok_CharClass tokens
int yyMinRep; // attribute for Tok_Quantifier
int yyMaxRep; // ditto
TQString yyError; // syntax error or overflow during parsing?
/*
This is the syntactic analyzer for regular expressions.
*/
int parse( const TQChar *rx, int len );
void parseAtom( Box *box );
void parseFactor( Box *box );
void parseTerm( Box *box );
void parseExpression( Box *box );
int yyTok; // the last token read
bool yyMayCapture; // set this to FALSE to disable capturing
/*
This is the engine state during matching.
*/
const TQString *mmStr; // a pointer to the input TQString
const TQChar *mmIn; // a pointer to the input string data
int mmPos; // the current position in the string
int mmCaretPos;
int mmLen; // the length of the input string
bool mmMinimal; // minimal matching?
TQMemArray<int> mmBigArray; // big TQMemArray<int> array
int *mmInNextStack; // is state is mmNextStack?
int *mmCurStack; // stack of current states
int *mmNextStack; // stack of next states
int *mmCurCapBegin; // start of current states' captures
int *mmNextCapBegin; // start of next states' captures
int *mmCurCapEnd; // end of current states' captures
int *mmNextCapEnd; // end of next states' captures
int *mmTempCapBegin; // start of temporary captures
int *mmTempCapEnd; // end of temporary captures
int *mmCapBegin; // start of captures for a next state
int *mmCapEnd; // end of captures for a next state
int *mmSlideTab; // bump-along slide table for bad-character heuristic
int mmSlideTabSize; // size of slide table
#ifndef TQT_NO_REGEXP_BACKREF
TQIntDict<int> mmSleeping; // dictionary of back-reference sleepers
#endif
int mmMatchLen; // length of match
int mmOneTestMatchedLen; // length of partial match
};
TQRegExpEngine::TQRegExpEngine( const TQString& rx, bool caseSensitive )
#ifndef TQT_NO_REGEXP_BACKREF
: mmSleeping( 101 )
#endif
{
setup( caseSensitive );
valid = ( parse(rx.unicode(), rx.length()) == (int) rx.length() );
if ( !valid ) {
#ifndef TQT_NO_REGEXP_OPTIM
trivial = FALSE;
#endif
error( RXERR_LEFTDELIM );
}
}
#ifndef TQT_NO_REGEXP_OPTIM
TQRegExpEngine::~TQRegExpEngine()
{
}
#endif
/*
Tries to match in str and returns an array of (begin, length) pairs
for captured text. If there is no match, all pairs are (-1, -1).
*/
void TQRegExpEngine::match( const TQString& str, int pos, bool minimal,
bool oneTest, int caretIndex,
TQMemArray<int>& captured )
{
bool matched = FALSE;
#ifndef TQT_NO_REGEXP_OPTIM
if ( trivial && !oneTest ) {
mmPos = str.find( goodStr, pos, cs );
mmMatchLen = goodStr.length();
matched = ( mmPos != -1 );
} else
#endif
{
mmStr = &str;
mmIn = str.unicode();
if ( mmIn == 0 )
mmIn = &TQChar::null;
mmPos = pos;
mmCaretPos = caretIndex;
mmLen = str.length();
mmMinimal = minimal;
mmMatchLen = 0;
mmOneTestMatchedLen = 0;
if ( valid && mmPos >= 0 && mmPos <= mmLen ) {
#ifndef TQT_NO_REGEXP_OPTIM
if ( oneTest ) {
matched = matchHere();
} else {
if ( mmPos <= mmLen - minl ) {
if ( caretAnchored ) {
matched = matchHere();
} else if ( useGoodStringHeuristic ) {
matched = goodStringMatch();
} else {
matched = badCharMatch();
}
}
}
#else
matched = oneTest ? matchHere() : bruteMatch();
#endif
}
}
int capturedSize = 2 + 2 * officialncap;
captured.detach();
captured.resize( capturedSize );
if ( matched ) {
captured[0] = mmPos;
captured[1] = mmMatchLen;
for ( int j = 0; j < officialncap; j++ ) {
int len = mmCapEnd[j] - mmCapBegin[j];
captured[2 + 2 * j] = len > 0 ? mmPos + mmCapBegin[j] : 0;
captured[2 + 2 * j + 1] = len;
}
} else {
// we rely on 2's complement here
memset( captured.data(), -1, capturedSize * sizeof(int) );
}
}
/*
The three following functions add one state to the automaton and
return the number of the state.
*/
int TQRegExpEngine::createState( TQChar ch )
{
return setupState( ch.unicode() );
}
int TQRegExpEngine::createState( const CharClass& cc )
{
#ifndef TQT_NO_REGEXP_CCLASS
int n = cl.size();
cl.resize( n + 1 );
cl.insert( n, new CharClass(cc) );
return setupState( CharClassBit | n );
#else
Q_UNUSED( cc );
return setupState( CharClassBit );
#endif
}
#ifndef TQT_NO_REGEXP_BACKREF
int TQRegExpEngine::createState( int bref )
{
if ( bref > nbrefs ) {
nbrefs = bref;
if ( nbrefs > MaxBackRefs ) {
error( RXERR_LIMIT );
return 0;
}
}
return setupState( BackRefBit | bref );
}
#endif
/*
The two following functions add a transition between all pairs of
states (i, j) where i is fond in from, and j is found in to.
Cat-transitions are distinguished from plus-transitions for
capturing.
*/
void TQRegExpEngine::addCatTransitions( const TQMemArray<int>& from,
const TQMemArray<int>& to )
{
for ( int i = 0; i < (int) from.size(); i++ ) {
State *st = s[from[i]];
mergeInto( &st->outs, to );
}
}
#ifndef TQT_NO_REGEXP_CAPTURE
void TQRegExpEngine::addPlusTransitions( const TQMemArray<int>& from,
const TQMemArray<int>& to, int atom )
{
for ( int i = 0; i < (int) from.size(); i++ ) {
State *st = s[from[i]];
TQMemArray<int> oldOuts = st->outs.copy();
mergeInto( &st->outs, to );
if ( f[atom].capture >= 0 ) {
if ( st->reenter == 0 )
st->reenter = new TQMap<int, int>;
for ( int j = 0; j < (int) to.size(); j++ ) {
if ( !st->reenter->contains(to[j]) &&
oldOuts.bsearch(to[j]) < 0 )
st->reenter->insert( to[j], atom );
}
}
}
}
#endif
#ifndef TQT_NO_REGEXP_ANCHOR_ALT
/*
Returns an anchor that means a OR b.
*/
int TQRegExpEngine::anchorAlternation( int a, int b )
{
if ( ((a & b) == a || (a & b) == b) && ((a | b) & Anchor_Alternation) == 0 )
return a & b;
int n = aa.size();
#ifndef TQT_NO_REGEXP_OPTIM
if ( n > 0 && aa[n - 1].a == a && aa[n - 1].b == b )
return Anchor_Alternation | ( n - 1 );
#endif
aa.resize( n + 1 );
aa[n].a = a;
aa[n].b = b;
return Anchor_Alternation | n;
}
/*
Returns an anchor that means a AND b.
*/
int TQRegExpEngine::anchorConcatenation( int a, int b )
{
if ( ((a | b) & Anchor_Alternation) == 0 )
return a | b;
if ( (b & Anchor_Alternation) != 0 )
tqSwap( a, b );
int aprime = anchorConcatenation( aa[a ^ Anchor_Alternation].a, b );
int bprime = anchorConcatenation( aa[a ^ Anchor_Alternation].b, b );
return anchorAlternation( aprime, bprime );
}
#endif
/*
Adds anchor a on a transition caracterised by its from state and
its to state.
*/
void TQRegExpEngine::addAnchors( int from, int to, int a )
{
State *st = s[from];
if ( st->anchors == 0 )
st->anchors = new TQMap<int, int>;
if ( st->anchors->contains(to) )
a = anchorAlternation( (*st->anchors)[to], a );
st->anchors->insert( to, a );
}
#ifndef TQT_NO_REGEXP_OPTIM
/*
This function chooses between the good-string and the bad-character
heuristics. It computes two scores and chooses the heuristic with
the highest score.
Here are some common-sense constraints on the scores that should be
respected if the formulas are ever modified: (1) If goodStr is
empty, the good-string heuristic scores 0. (2) If the regular
expression is trivial, the good-string heuristic should be used.
(3) If the search is case insensitive, the good-string heuristic
should be used, unless it scores 0. (Case insensitivity turns all
entries of occ1 to 0.) (4) If (goodLateStart - goodEarlyStart) is
big, the good-string heuristic should score less.
*/
void TQRegExpEngine::heuristicallyChooseHeuristic()
{
if ( minl == 0 ) {
useGoodStringHeuristic = FALSE;
} else if ( trivial ) {
useGoodStringHeuristic = TRUE;
} else {
/*
Magic formula: The good string has to constitute a good
proportion of the minimum-length string, and appear at a
more-or-less known index.
*/
int goodStringScore = ( 64 * goodStr.length() / minl ) -
( goodLateStart - goodEarlyStart );
/*
Less magic formula: We pick some characters at random, and
check whether they are good or bad.
*/
int badCharScore = 0;
int step = TQMAX( 1, NumBadChars / 32 );
for ( int i = 1; i < NumBadChars; i += step ) {
if ( occ1[i] == NoOccurrence )
badCharScore += minl;
else
badCharScore += occ1[i];
}
badCharScore /= minl;
useGoodStringHeuristic = ( goodStringScore > badCharScore );
}
}
#endif
#if defined(QT_DEBUG)
void TQRegExpEngine::dump() const
{
int i, j;
tqDebug( "Case %ssensitive engine", cs ? "" : "in" );
tqDebug( " States" );
for ( i = 0; i < ns; i++ ) {
tqDebug( " %d%s", i,
i == InitialState ? " (initial)" :
i == FinalState ? " (final)" : "" );
#ifndef TQT_NO_REGEXP_CAPTURE
tqDebug( " in atom %d", s[i]->atom );
#endif
int m = s[i]->match;
if ( (m & CharClassBit) != 0 ) {
tqDebug( " match character class %d", m ^ CharClassBit );
#ifndef TQT_NO_REGEXP_CCLASS
cl[m ^ CharClassBit]->dump();
#else
tqDebug( " negative character class" );
#endif
} else if ( (m & BackRefBit) != 0 ) {
tqDebug( " match back-reference %d", m ^ BackRefBit );
} else if ( m >= 0x20 && m <= 0x7e ) {
tqDebug( " match 0x%.4x (%c)", m, m );
} else {
tqDebug( " match 0x%.4x", m );
}
for ( j = 0; j < (int) s[i]->outs.size(); j++ ) {
int next = s[i]->outs[j];
tqDebug( " -> %d", next );
if ( s[i]->reenter != 0 && s[i]->reenter->contains(next) )
tqDebug( " [reenter %d]", (*s[i]->reenter)[next] );
if ( s[i]->anchors != 0 && at(*s[i]->anchors, next) != 0 )
tqDebug( " [anchors 0x%.8x]", (*s[i]->anchors)[next] );
}
}
#ifndef TQT_NO_REGEXP_CAPTURE
if ( nf > 0 ) {
tqDebug( " Atom Parent Capture" );
for ( i = 0; i < nf; i++ )
tqDebug( " %6d %6d %6d", i, f[i].parent, f[i].capture );
}
#endif
#ifndef TQT_NO_REGEXP_ANCHOR_ALT
for ( i = 0; i < (int) aa.size(); i++ )
tqDebug( " Anchor alternation 0x%.8x: 0x%.8x 0x%.9x", i, aa[i].a,
aa[i].b );
#endif
}
#endif
void TQRegExpEngine::setup( bool caseSensitive )
{
s.setAutoDelete( TRUE );
s.resize( 32 );
ns = 0;
#ifndef TQT_NO_REGEXP_CAPTURE
f.resize( 32 );
nf = 0;
cf = -1;
#endif
officialncap = 0;
ncap = 0;
#ifndef TQT_NO_REGEXP_CCLASS
cl.setAutoDelete( TRUE );
#endif
#ifndef TQT_NO_REGEXP_LOOKAHEAD
ahead.setAutoDelete( TRUE );
#endif
#ifndef TQT_NO_REGEXP_OPTIM
caretAnchored = TRUE;
trivial = TRUE;
#endif
valid = FALSE;
cs = caseSensitive;
#ifndef TQT_NO_REGEXP_BACKREF
nbrefs = 0;
#endif
#ifndef TQT_NO_REGEXP_OPTIM
useGoodStringHeuristic = TRUE;
minl = 0;
occ1.fill( 0, NumBadChars );
#endif
}
int TQRegExpEngine::setupState( int match )
{
if ( (ns & (ns + 1)) == 0 && ns + 1 >= (int) s.size() )
s.resize( (ns + 1) << 1 );
#ifndef TQT_NO_REGEXP_CAPTURE
s.insert( ns, new State(cf, match) );
#else
s.insert( ns, new State(match) );
#endif
return ns++;
}
#ifndef TQT_NO_REGEXP_CAPTURE
/*
Functions startAtom() and finishAtom() should be called to delimit
atoms. When a state is created, it is assigned to the current atom.
The information is later used for capturing.
*/
int TQRegExpEngine::startAtom( bool capture )
{
if ( (nf & (nf + 1)) == 0 && nf + 1 >= (int) f.size() )
f.resize( (nf + 1) << 1 );
f[nf].parent = cf;
cf = nf++;
f[cf].capture = capture ? ncap++ : -1;
return cf;
}
#endif
#ifndef TQT_NO_REGEXP_LOOKAHEAD
/*
Creates a lookahead anchor.
*/
int TQRegExpEngine::addLookahead( TQRegExpEngine *eng, bool negative )
{
int n = ahead.size();
if ( n == MaxLookaheads ) {
error( RXERR_LIMIT );
return 0;
}
ahead.resize( n + 1 );
ahead.insert( n, new Lookahead(eng, negative) );
return Anchor_FirstLookahead << n;
}
#endif
#ifndef TQT_NO_REGEXP_CAPTURE
/*
We want the longest leftmost captures.
*/
bool TQRegExpEngine::isBetterCapture( const int *begin1, const int *end1,
const int *begin2, const int *end2 )
{
for ( int i = 0; i < ncap; i++ ) {
int delta = begin2[i] - begin1[i]; // it has to start early...
if ( delta == 0 )
delta = end1[i] - end2[i]; // ...and end late (like a party)
if ( delta != 0 )
return delta > 0;
}
return FALSE;
}
#endif
/*
Returns TRUE if anchor a matches at position mmPos + i in the input
string, otherwise FALSE.
*/
bool TQRegExpEngine::testAnchor( int i, int a, const int *capBegin )
{
int j;
#ifndef TQT_NO_REGEXP_ANCHOR_ALT
if ( (a & Anchor_Alternation) != 0 ) {
return testAnchor( i, aa[a ^ Anchor_Alternation].a, capBegin ) ||
testAnchor( i, aa[a ^ Anchor_Alternation].b, capBegin );
}
#endif
if ( (a & Anchor_Caret) != 0 ) {
if ( mmPos + i != mmCaretPos )
return FALSE;
}
if ( (a & Anchor_Dollar) != 0 ) {
if ( mmPos + i != mmLen )
return FALSE;
}
#ifndef TQT_NO_REGEXP_ESCAPE
if ( (a & (Anchor_Word | Anchor_NonWord)) != 0 ) {
bool before = FALSE;
bool after = FALSE;
if ( mmPos + i != 0 )
before = isWord( mmIn[mmPos + i - 1] );
if ( mmPos + i != mmLen )
after = isWord( mmIn[mmPos + i] );
if ( (a & Anchor_Word) != 0 && (before == after) )
return FALSE;
if ( (a & Anchor_NonWord) != 0 && (before != after) )
return FALSE;
}
#endif
#ifndef TQT_NO_REGEXP_LOOKAHEAD
if ( (a & Anchor_LookaheadMask) != 0 ) {
TQConstString cstr = TQConstString( (TQChar *) mmIn + mmPos + i,
mmLen - mmPos - i );
for ( j = 0; j < (int) ahead.size(); j++ ) {
if ( (a & (Anchor_FirstLookahead << j)) != 0 ) {
TQMemArray<int> captured;
ahead[j]->eng->match( cstr.string(), 0, TRUE, TRUE,
mmCaretPos - mmPos - i, captured );
if ( (captured[0] == 0) == ahead[j]->neg )
return FALSE;
}
}
}
#endif
#ifndef TQT_NO_REGEXP_CAPTURE
#ifndef TQT_NO_REGEXP_BACKREF
for ( j = 0; j < nbrefs; j++ ) {
if ( (a & (Anchor_BackRef1Empty << j)) != 0 ) {
if ( capBegin[j] != EmptyCapture )
return FALSE;
}
}
#endif
#endif
return TRUE;
}
#ifndef TQT_NO_REGEXP_OPTIM
/*
The three following functions are what Jeffrey Friedl would call
transmissions (or bump-alongs). Using one or the other should make
no difference except in performance.
*/
bool TQRegExpEngine::goodStringMatch()
{
int k = mmPos + goodEarlyStart;
while ( (k = mmStr->find(goodStr, k, cs)) != -1 ) {
int from = k - goodLateStart;
int to = k - goodEarlyStart;
if ( from > mmPos )
mmPos = from;
while ( mmPos <= to ) {
if ( matchHere() )
return TRUE;
mmPos++;
}
k++;
}
return FALSE;
}
bool TQRegExpEngine::badCharMatch()
{
int slideHead = 0;
int slideNext = 0;
int i;
int lastPos = mmLen - minl;
memset( mmSlideTab, 0, mmSlideTabSize * sizeof(int) );
/*
Set up the slide table, used for the bad-character heuristic,
using the table of first occurrence of each character.
*/
for ( i = 0; i < minl; i++ ) {
int sk = occ1[BadChar(mmIn[mmPos + i])];
if ( sk == NoOccurrence )
sk = i + 1;
if ( sk > 0 ) {
int k = i + 1 - sk;
if ( k < 0 ) {
sk = i + 1;
k = 0;
}
if ( sk > mmSlideTab[k] )
mmSlideTab[k] = sk;
}
}
if ( mmPos > lastPos )
return FALSE;
for ( ;; ) {
if ( ++slideNext >= mmSlideTabSize )
slideNext = 0;
if ( mmSlideTab[slideHead] > 0 ) {
if ( mmSlideTab[slideHead] - 1 > mmSlideTab[slideNext] )
mmSlideTab[slideNext] = mmSlideTab[slideHead] - 1;
mmSlideTab[slideHead] = 0;
} else {
if ( matchHere() )
return TRUE;
}
if ( mmPos == lastPos )
break;
/*
Update the slide table. This code has much in common with
the initialization code.
*/
int sk = occ1[BadChar(mmIn[mmPos + minl])];
if ( sk == NoOccurrence ) {
mmSlideTab[slideNext] = minl;
} else if ( sk > 0 ) {
int k = slideNext + minl - sk;
if ( k >= mmSlideTabSize )
k -= mmSlideTabSize;
if ( sk > mmSlideTab[k] )
mmSlideTab[k] = sk;
}
slideHead = slideNext;
mmPos++;
}
return FALSE;
}
#else
bool TQRegExpEngine::bruteMatch()
{
while ( mmPos <= mmLen ) {
if ( matchHere() )
return TRUE;
mmPos++;
}
return FALSE;
}
#endif
/*
Here's the core of the engine. It tries to do a match here and now.
*/
bool TQRegExpEngine::matchHere()
{
int ncur = 1, nnext = 0;
int i = 0, j, k, m;
bool stop = FALSE;
mmMatchLen = -1;
mmOneTestMatchedLen = -1;
mmCurStack[0] = InitialState;
#ifndef TQT_NO_REGEXP_CAPTURE
if ( ncap > 0 ) {
for ( j = 0; j < ncap; j++ ) {
mmCurCapBegin[j] = EmptyCapture;
mmCurCapEnd[j] = EmptyCapture;
}
}
#endif
#ifndef TQT_NO_REGEXP_BACKREF
int *zzZ = 0;
while ( (ncur > 0 || !mmSleeping.isEmpty()) && i <= mmLen - mmPos &&
!stop )
#else
while ( ncur > 0 && i <= mmLen - mmPos && !stop )
#endif
{
int ch = ( i < mmLen - mmPos ) ? mmIn[mmPos + i].unicode() : 0;
for ( j = 0; j < ncur; j++ ) {
int cur = mmCurStack[j];
State *scur = s[cur];
TQMemArray<int>& outs = scur->outs;
for ( k = 0; k < (int) outs.size(); k++ ) {
int next = outs[k];
State *snext = s[next];
bool in = TRUE;
#ifndef TQT_NO_REGEXP_BACKREF
int needSomeSleep = 0;
#endif
/*
First, check if the anchors are anchored properly.
*/
if ( scur->anchors != 0 ) {
int a = at( *scur->anchors, next );
if ( a != 0 && !testAnchor(i, a, mmCurCapBegin + j * ncap) )
in = FALSE;
}
/*
If indeed they are, check if the input character is
correct for this transition.
*/
if ( in ) {
m = snext->match;
if ( (m & (CharClassBit | BackRefBit)) == 0 ) {
if ( cs )
in = ( m == ch );
else
in = ( TQChar(m).lower() == TQChar(ch).lower() );
} else if ( next == FinalState ) {
mmMatchLen = i;
stop = mmMinimal;
in = TRUE;
} else if ( (m & CharClassBit) != 0 ) {
#ifndef TQT_NO_REGEXP_CCLASS
const CharClass *cc = cl[m ^ CharClassBit];
if ( cs )
in = cc->in( ch );
else if ( cc->negative() )
in = cc->in( TQChar(ch).lower() ) &&
cc->in( TQChar(ch).upper() );
else
in = cc->in( TQChar(ch).lower() ) ||
cc->in( TQChar(ch).upper() );
#endif
#ifndef TQT_NO_REGEXP_BACKREF
} else { /* ( (m & BackRefBit) != 0 ) */
int bref = m ^ BackRefBit;
int ell = j * ncap + ( bref - 1 );
in = bref <= ncap && mmCurCapBegin[ell] != EmptyCapture;
if ( in ) {
if ( cs )
in = ( mmIn[mmPos + mmCurCapBegin[ell]]
== TQChar(ch) );
else
in = ( mmIn[mmPos + mmCurCapBegin[ell]].lower()
== TQChar(ch).lower() );
}
if ( in ) {
int delta;
if ( mmCurCapEnd[ell] == EmptyCapture )
delta = i - mmCurCapBegin[ell];
else
delta = mmCurCapEnd[ell] - mmCurCapBegin[ell];
in = ( delta <= mmLen - (mmPos + i) );
if ( in && delta > 1 ) {
int n = 1;
if ( cs ) {
while ( n < delta ) {
if ( mmIn[mmPos +
mmCurCapBegin[ell] + n] !=
mmIn[mmPos + i + n] )
break;
n++;
}
} else {
while ( n < delta ) {
TQChar a = mmIn[mmPos +
mmCurCapBegin[ell] + n];
TQChar b = mmIn[mmPos + i + n];
if ( a.lower() != b.lower() )
break;
n++;
}
}
in = ( n == delta );
if ( in )
needSomeSleep = delta - 1;
}
}
#endif
}
}
/*
We must now update our data structures.
*/
if ( in ) {
#ifndef TQT_NO_REGEXP_CAPTURE
int *capBegin, *capEnd;
#endif
/*
If the next state was not encountered yet, all
is fine.
*/
if ( (m = mmInNextStack[next]) == -1 ) {
m = nnext++;
mmNextStack[m] = next;
mmInNextStack[next] = m;
#ifndef TQT_NO_REGEXP_CAPTURE
capBegin = mmNextCapBegin + m * ncap;
capEnd = mmNextCapEnd + m * ncap;
/*
Otherwise, we'll first maintain captures in
temporary arrays, and decide at the end whether
it's best to keep the previous capture zones or
the new ones.
*/
} else {
capBegin = mmTempCapBegin;
capEnd = mmTempCapEnd;
#endif
}
#ifndef TQT_NO_REGEXP_CAPTURE
/*
Updating the capture zones is much of a task.
*/
if ( ncap > 0 ) {
memcpy( capBegin, mmCurCapBegin + j * ncap,
ncap * sizeof(int) );
memcpy( capEnd, mmCurCapEnd + j * ncap,
ncap * sizeof(int) );
int c = scur->atom, n = snext->atom;
int p = -1, q = -1;
int cap;
/*
Lemma 1. For any x in the range [0..nf), we
have f[x].parent < x.
Proof. By looking at startAtom(), it is
clear that cf < nf holds all the time, and
thus that f[nf].parent < nf.
*/
/*
If we are reentering an atom, we empty all
capture zones inside it.
*/
if ( scur->reenter != 0 &&
(q = at(*scur->reenter, next)) != 0 ) {
TQBitArray b;
b.fill( FALSE, nf );
b.setBit( q, TRUE );
for ( int ell = q + 1; ell < nf; ell++ ) {
if ( b.testBit(f[ell].parent) ) {
b.setBit( ell, TRUE );
cap = f[ell].capture;
if ( cap >= 0 ) {
capBegin[cap] = EmptyCapture;
capEnd[cap] = EmptyCapture;
}
}
}
p = f[q].parent;
/*
Otherwise, close the capture zones we are
leaving. We are leaving f[c].capture,
f[f[c].parent].capture,
f[f[f[c].parent].parent].capture, ...,
until f[x].capture, with x such that
f[x].parent is the youngest common ancestor
for c and n.
We go up along c's and n's ancestry until
we find x.
*/
} else {
p = c;
q = n;
while ( p != q ) {
if ( p > q ) {
cap = f[p].capture;
if ( cap >= 0 ) {
if ( capBegin[cap] == i ) {
capBegin[cap] = EmptyCapture;
capEnd[cap] = EmptyCapture;
} else {
capEnd[cap] = i;
}
}
p = f[p].parent;
} else {
q = f[q].parent;
}
}
}
/*
In any case, we now open the capture zones
we are entering. We work upwards from n
until we reach p (the parent of the atom we
reenter or the youngest common ancestor).
*/
while ( n > p ) {
cap = f[n].capture;
if ( cap >= 0 ) {
capBegin[cap] = i;
capEnd[cap] = EmptyCapture;
}
n = f[n].parent;
}
/*
If the next state was already in
mmNextStack, we must choose carefully which
capture zones we want to keep.
*/
if ( capBegin == mmTempCapBegin &&
isBetterCapture(capBegin, capEnd,
mmNextCapBegin + m * ncap,
mmNextCapEnd + m * ncap) ) {
memcpy( mmNextCapBegin + m * ncap, capBegin,
ncap * sizeof(int) );
memcpy( mmNextCapEnd + m * ncap, capEnd,
ncap * sizeof(int) );
}
}
#ifndef TQT_NO_REGEXP_BACKREF
/*
We are done with updating the capture zones.
It's now time to put the next state to sleep,
if it needs to, and to remove it from
mmNextStack.
*/
if ( needSomeSleep > 0 ) {
zzZ = new int[1 + 2 * ncap];
zzZ[0] = next;
if ( ncap > 0 ) {
memcpy( zzZ + 1, capBegin, ncap * sizeof(int) );
memcpy( zzZ + 1 + ncap, capEnd,
ncap * sizeof(int) );
}
mmInNextStack[mmNextStack[--nnext]] = -1;
mmSleeping.insert( i + needSomeSleep, zzZ );
}
#endif
#endif
}
}
}
#ifndef TQT_NO_REGEXP_CAPTURE
/*
If we reached the final state, hurray! Copy the captured
zone.
*/
if ( ncap > 0 && (m = mmInNextStack[FinalState]) != -1 ) {
memcpy( mmCapBegin, mmNextCapBegin + m * ncap, ncap * sizeof(int) );
memcpy( mmCapEnd, mmNextCapEnd + m * ncap, ncap * sizeof(int) );
}
#ifndef TQT_NO_REGEXP_BACKREF
/*
It's time to wake up the sleepers.
*/
if ( !mmSleeping.isEmpty() ) {
while ( (zzZ = mmSleeping.take(i)) != 0 ) {
int next = zzZ[0];
int *capBegin = zzZ + 1;
int *capEnd = zzZ + 1 + ncap;
bool copyOver = TRUE;
if ( (m = mmInNextStack[zzZ[0]]) == -1 ) {
m = nnext++;
mmNextStack[m] = next;
mmInNextStack[next] = m;
} else {
copyOver = isBetterCapture( mmNextCapBegin + m * ncap,
mmNextCapEnd + m * ncap,
capBegin, capEnd );
}
if ( copyOver ) {
memcpy( mmNextCapBegin + m * ncap, capBegin,
ncap * sizeof(int) );
memcpy( mmNextCapEnd + m * ncap, capEnd,
ncap * sizeof(int) );
}
delete[] zzZ;
}
}
#endif
#endif
for ( j = 0; j < nnext; j++ )
mmInNextStack[mmNextStack[j]] = -1;
// avoid needless iteration that confuses mmOneTestMatchedLen
if ( nnext == 1 && mmNextStack[0] == FinalState
#ifndef TQT_NO_REGEXP_BACKREF
&& mmSleeping.isEmpty()
#endif
)
stop = TRUE;
tqSwap( mmCurStack, mmNextStack );
#ifndef TQT_NO_REGEXP_CAPTURE
tqSwap( mmCurCapBegin, mmNextCapBegin );
tqSwap( mmCurCapEnd, mmNextCapEnd );
#endif
ncur = nnext;
nnext = 0;
i++;
}
#ifndef TQT_NO_REGEXP_BACKREF
/*
If minimal matching is enabled, we might have some sleepers
left.
*/
while ( !mmSleeping.isEmpty() ) {
zzZ = mmSleeping.take( *TQIntDictIterator<int>(mmSleeping) );
delete[] zzZ;
}
#endif
mmOneTestMatchedLen = i - 1;
return ( mmMatchLen >= 0 );
}
#ifndef TQT_NO_REGEXP_CCLASS
TQRegExpEngine::CharClass::CharClass()
: c( 0 ), n( FALSE )
{
#ifndef TQT_NO_REGEXP_OPTIM
occ1.fill( NoOccurrence, NumBadChars );
#endif
}
TQRegExpEngine::CharClass& TQRegExpEngine::CharClass::operator=(
const CharClass& cc )
{
c = cc.c;
r = cc.r.copy();
n = cc.n;
#ifndef TQT_NO_REGEXP_OPTIM
occ1 = cc.occ1;
#endif
return *this;
}
void TQRegExpEngine::CharClass::clear()
{
c = 0;
r.resize( 0 );
n = FALSE;
}
void TQRegExpEngine::CharClass::setNegative( bool negative )
{
n = negative;
#ifndef TQT_NO_REGEXP_OPTIM
occ1.fill( 0, NumBadChars );
#endif
}
void TQRegExpEngine::CharClass::addCategories( int cats )
{
c |= cats;
#ifndef TQT_NO_REGEXP_OPTIM
occ1.fill( 0, NumBadChars );
#endif
}
void TQRegExpEngine::CharClass::addRange( ushort from, ushort to )
{
if ( from > to )
tqSwap( from, to );
int m = r.size();
r.resize( m + 1 );
r[m].from = from;
r[m].to = to;
#ifndef TQT_NO_REGEXP_OPTIM
int i;
if ( to - from < NumBadChars ) {
occ1.detach();
if ( from % NumBadChars <= to % NumBadChars ) {
for ( i = from % NumBadChars; i <= to % NumBadChars; i++ )
occ1[i] = 0;
} else {
for ( i = 0; i <= to % NumBadChars; i++ )
occ1[i] = 0;
for ( i = from % NumBadChars; i < NumBadChars; i++ )
occ1[i] = 0;
}
} else {
occ1.fill( 0, NumBadChars );
}
#endif
}
bool TQRegExpEngine::CharClass::in( TQChar ch ) const
{
#ifndef TQT_NO_REGEXP_OPTIM
if ( occ1[BadChar(ch)] == NoOccurrence )
return n;
#endif
if ( c != 0 && (c & (1 << (int) ch.category())) != 0 )
return !n;
for ( int i = 0; i < (int) r.size(); i++ ) {
if ( ch.unicode() >= r[i].from && ch.unicode() <= r[i].to )
return !n;
}
return n;
}
#if defined(QT_DEBUG)
void TQRegExpEngine::CharClass::dump() const
{
int i;
tqDebug( " %stive character class", n ? "nega" : "posi" );
#ifndef TQT_NO_REGEXP_CCLASS
if ( c != 0 )
tqDebug( " categories 0x%.8x", c );
#endif
for ( i = 0; i < (int) r.size(); i++ )
tqDebug( " 0x%.4x through 0x%.4x", r[i].from, r[i].to );
}
#endif
#endif
TQRegExpEngine::Box::Box( TQRegExpEngine *engine )
: eng( engine ), skipanchors( 0 )
#ifndef TQT_NO_REGEXP_OPTIM
, earlyStart( 0 ), lateStart( 0 ), maxl( 0 )
#endif
{
#ifndef TQT_NO_REGEXP_OPTIM
occ1.fill( NoOccurrence, NumBadChars );
#endif
minl = 0;
}
TQRegExpEngine::Box& TQRegExpEngine::Box::operator=( const Box& b )
{
eng = b.eng;
ls = b.ls;
rs = b.rs;
lanchors = b.lanchors;
ranchors = b.ranchors;
skipanchors = b.skipanchors;
#ifndef TQT_NO_REGEXP_OPTIM
earlyStart = b.earlyStart;
lateStart = b.lateStart;
str = b.str;
leftStr = b.leftStr;
rightStr = b.rightStr;
maxl = b.maxl;
occ1 = b.occ1;
#endif
minl = b.minl;
return *this;
}
void TQRegExpEngine::Box::set( TQChar ch )
{
ls.resize( 1 );
ls[0] = eng->createState( ch );
rs = ls;
rs.detach();
#ifndef TQT_NO_REGEXP_OPTIM
str = ch;
leftStr = ch;
rightStr = ch;
maxl = 1;
occ1.detach();
occ1[BadChar(ch)] = 0;
#endif
minl = 1;
}
void TQRegExpEngine::Box::set( const CharClass& cc )
{
ls.resize( 1 );
ls[0] = eng->createState( cc );
rs = ls;
rs.detach();
#ifndef TQT_NO_REGEXP_OPTIM
maxl = 1;
occ1 = cc.firstOccurrence();
#endif
minl = 1;
}
#ifndef TQT_NO_REGEXP_BACKREF
void TQRegExpEngine::Box::set( int bref )
{
ls.resize( 1 );
ls[0] = eng->createState( bref );
rs = ls;
rs.detach();
if ( bref >= 1 && bref <= MaxBackRefs )
skipanchors = Anchor_BackRef0Empty << bref;
#ifndef TQT_NO_REGEXP_OPTIM
maxl = InftyLen;
#endif
minl = 0;
}
#endif
void TQRegExpEngine::Box::cat( const Box& b )
{
eng->addCatTransitions( rs, b.ls );
addAnchorsToEngine( b );
if ( minl == 0 ) {
mergeInto( &lanchors, b.lanchors );
if ( skipanchors != 0 ) {
for ( int i = 0; i < (int) b.ls.size(); i++ ) {
int a = eng->anchorConcatenation( at(lanchors, b.ls[i]),
skipanchors );
lanchors.insert( b.ls[i], a );
}
}
mergeInto( &ls, b.ls );
}
if ( b.minl == 0 ) {
mergeInto( &ranchors, b.ranchors );
if ( b.skipanchors != 0 ) {
for ( int i = 0; i < (int) rs.size(); i++ ) {
int a = eng->anchorConcatenation( at(ranchors, rs[i]),
b.skipanchors );
ranchors.insert( rs[i], a );
}
}
mergeInto( &rs, b.rs );
} else {
ranchors = b.ranchors;
rs = b.rs;
}
#ifndef TQT_NO_REGEXP_OPTIM
if ( maxl != InftyLen ) {
if ( rightStr.length() + b.leftStr.length() >
TQMAX(str.length(), b.str.length()) ) {
earlyStart = minl - rightStr.length();
lateStart = maxl - rightStr.length();
str = rightStr + b.leftStr;
} else if ( b.str.length() > str.length() ) {
earlyStart = minl + b.earlyStart;
lateStart = maxl + b.lateStart;
str = b.str;
}
}
if ( (int) leftStr.length() == maxl )
leftStr += b.leftStr;
if ( (int) b.rightStr.length() == b.maxl ) {
rightStr += b.rightStr;
} else {
rightStr = b.rightStr;
}
if ( maxl == InftyLen || b.maxl == InftyLen ) {
maxl = InftyLen;
} else {
maxl += b.maxl;
}
occ1.detach();
for ( int i = 0; i < NumBadChars; i++ ) {
if ( b.occ1[i] != NoOccurrence && minl + b.occ1[i] < occ1[i] )
occ1[i] = minl + b.occ1[i];
}
#endif
minl += b.minl;
if ( minl == 0 )
skipanchors = eng->anchorConcatenation( skipanchors, b.skipanchors );
else
skipanchors = 0;
}
void TQRegExpEngine::Box::orx( const Box& b )
{
mergeInto( &ls, b.ls );
mergeInto( &lanchors, b.lanchors );
mergeInto( &rs, b.rs );
mergeInto( &ranchors, b.ranchors );
if ( b.minl == 0 ) {
if ( minl == 0 )
skipanchors = eng->anchorAlternation( skipanchors, b.skipanchors );
else
skipanchors = b.skipanchors;
}
#ifndef TQT_NO_REGEXP_OPTIM
occ1.detach();
for ( int i = 0; i < NumBadChars; i++ ) {
if ( occ1[i] > b.occ1[i] )
occ1[i] = b.occ1[i];
}
earlyStart = 0;
lateStart = 0;
str = TQString();
leftStr = TQString();
rightStr = TQString();
if ( b.maxl > maxl )
maxl = b.maxl;
#endif
if ( b.minl < minl )
minl = b.minl;
}
void TQRegExpEngine::Box::plus( int atom )
{
#ifndef TQT_NO_REGEXP_CAPTURE
eng->addPlusTransitions( rs, ls, atom );
#else
Q_UNUSED( atom );
eng->addCatTransitions( rs, ls );
#endif
addAnchorsToEngine( *this );
#ifndef TQT_NO_REGEXP_OPTIM
maxl = InftyLen;
#endif
}
void TQRegExpEngine::Box::opt()
{
#ifndef TQT_NO_REGEXP_OPTIM
earlyStart = 0;
lateStart = 0;
str = TQString();
leftStr = TQString();
rightStr = TQString();
#endif
skipanchors = 0;
minl = 0;
}
void TQRegExpEngine::Box::catAnchor( int a )
{
if ( a != 0 ) {
for ( int i = 0; i < (int) rs.size(); i++ ) {
a = eng->anchorConcatenation( at(ranchors, rs[i]), a );
ranchors.insert( rs[i], a );
}
if ( minl == 0 )
skipanchors = eng->anchorConcatenation( skipanchors, a );
}
}
#ifndef TQT_NO_REGEXP_OPTIM
void TQRegExpEngine::Box::setupHeuristics()
{
eng->goodEarlyStart = earlyStart;
eng->goodLateStart = lateStart;
eng->goodStr = eng->cs ? str : str.lower();
eng->minl = minl;
if ( eng->cs ) {
/*
A regular expression such as 112|1 has occ1['2'] = 2 and minl =
1 at this point. An entry of occ1 has to be at most minl or
infinity for the rest of the algorithm to go well.
We waited until here before normalizing these cases (instead of
doing it in Box::orx()) because sometimes things improve by
themselves. Consider for example (112|1)34.
*/
for ( int i = 0; i < NumBadChars; i++ ) {
if ( occ1[i] != NoOccurrence && occ1[i] >= minl )
occ1[i] = minl;
}
eng->occ1 = occ1;
} else {
eng->occ1.fill( 0, NumBadChars );
}
eng->heuristicallyChooseHeuristic();
}
#endif
#if defined(QT_DEBUG)
void TQRegExpEngine::Box::dump() const
{
int i;
tqDebug( "Box of at least %d character%s", minl, minl == 1 ? "" : "s" );
tqDebug( " Left states:" );
for ( i = 0; i < (int) ls.size(); i++ ) {
if ( at(lanchors, ls[i]) == 0 )
tqDebug( " %d", ls[i] );
else
tqDebug( " %d [anchors 0x%.8x]", ls[i], lanchors[ls[i]] );
}
tqDebug( " Right states:" );
for ( i = 0; i < (int) rs.size(); i++ ) {
if ( at(ranchors, rs[i]) == 0 )
tqDebug( " %d", rs[i] );
else
tqDebug( " %d [anchors 0x%.8x]", rs[i], ranchors[rs[i]] );
}
tqDebug( " Skip anchors: 0x%.8x", skipanchors );
}
#endif
void TQRegExpEngine::Box::addAnchorsToEngine( const Box& to ) const
{
for ( int i = 0; i < (int) to.ls.size(); i++ ) {
for ( int j = 0; j < (int) rs.size(); j++ ) {
int a = eng->anchorConcatenation( at(ranchors, rs[j]),
at(to.lanchors, to.ls[i]) );
eng->addAnchors( rs[j], to.ls[i], a );
}
}
}
int TQRegExpEngine::getChar()
{
return ( yyPos == yyLen ) ? EOS : yyIn[yyPos++].unicode();
}
int TQRegExpEngine::getEscape()
{
#ifndef TQT_NO_REGEXP_ESCAPE
const char tab[] = "afnrtv"; // no b, as \b means word boundary
const char backTab[] = "\a\f\n\r\t\v";
ushort low;
int i;
#endif
ushort val;
int prevCh = yyCh;
if ( prevCh == EOS ) {
error( RXERR_END );
return Tok_Char | '\\';
}
yyCh = getChar();
#ifndef TQT_NO_REGEXP_ESCAPE
if ( (prevCh & ~0xff) == 0 ) {
const char *p = strchr( tab, prevCh );
if ( p != 0 )
return Tok_Char | backTab[p - tab];
}
#endif
switch ( prevCh ) {
#ifndef TQT_NO_REGEXP_ESCAPE
case '0':
val = 0;
for ( i = 0; i < 3; i++ ) {
if ( yyCh >= '0' && yyCh <= '7' )
val = ( val << 3 ) | ( yyCh - '0' );
else
break;
yyCh = getChar();
}
if ( (val & ~0377) != 0 )
error( RXERR_OCTAL );
return Tok_Char | val;
#endif
#ifndef TQT_NO_REGEXP_ESCAPE
case 'B':
return Tok_NonWord;
#endif
#ifndef TQT_NO_REGEXP_CCLASS
case 'D':
// see TQChar::isDigit()
yyCharClass->addCategories( 0x7fffffef );
return Tok_CharClass;
case 'S':
// see TQChar::isSpace()
yyCharClass->addCategories( 0x7ffff87f );
yyCharClass->addRange( 0x0000, 0x0008 );
yyCharClass->addRange( 0x000e, 0x001f );
yyCharClass->addRange( 0x007f, 0x009f );
return Tok_CharClass;
case 'W':
// see TQChar::isLetterOrNumber()
yyCharClass->addCategories( 0x7fe07f8f );
yyCharClass->addRange( 0x203f, 0x2040 );
yyCharClass->addSingleton( 0x2040 );
yyCharClass->addSingleton( 0x30fb );
yyCharClass->addRange( 0xfe33, 0xfe34 );
yyCharClass->addRange( 0xfe4d, 0xfe4f );
yyCharClass->addSingleton( 0xff3f );
yyCharClass->addSingleton( 0xff65 );
return Tok_CharClass;
#endif
#ifndef TQT_NO_REGEXP_ESCAPE
case 'b':
return Tok_Word;
#endif
#ifndef TQT_NO_REGEXP_CCLASS
case 'd':
// see TQChar::isDigit()
yyCharClass->addCategories( 0x00000010 );
return Tok_CharClass;
case 's':
// see TQChar::isSpace()
yyCharClass->addCategories( 0x00000380 );
yyCharClass->addRange( 0x0009, 0x000d );
return Tok_CharClass;
case 'w':
// see TQChar::isLetterOrNumber()
yyCharClass->addCategories( 0x000f8070 );
yyCharClass->addSingleton( 0x005f ); // '_'
return Tok_CharClass;
#endif
#ifndef TQT_NO_REGEXP_ESCAPE
case 'x':
val = 0;
for ( i = 0; i < 4; i++ ) {
low = TQChar( yyCh ).lower();
if ( low >= '0' && low <= '9' )
val = ( val << 4 ) | ( low - '0' );
else if ( low >= 'a' && low <= 'f' )
val = ( val << 4 ) | ( low - 'a' + 10 );
else
break;
yyCh = getChar();
}
return Tok_Char | val;
#endif
default:
if ( prevCh >= '1' && prevCh <= '9' ) {
#ifndef TQT_NO_REGEXP_BACKREF
val = prevCh - '0';
while ( yyCh >= '0' && yyCh <= '9' ) {
val = ( val * 10 ) + ( yyCh - '0' );
yyCh = getChar();
}
return Tok_BackRef | val;
#else
error( RXERR_DISABLED );
#endif
}
return Tok_Char | prevCh;
}
}
#ifndef TQT_NO_REGEXP_INTERVAL
int TQRegExpEngine::getRep( int def )
{
if ( yyCh >= '0' && yyCh <= '9' ) {
int rep = 0;
do {
rep = 10 * rep + yyCh - '0';
if ( rep >= InftyRep ) {
error( RXERR_REPETITION );
rep = def;
}
yyCh = getChar();
} while ( yyCh >= '0' && yyCh <= '9' );
return rep;
} else {
return def;
}
}
#endif
#ifndef TQT_NO_REGEXP_LOOKAHEAD
void TQRegExpEngine::skipChars( int n )
{
if ( n > 0 ) {
yyPos += n - 1;
yyCh = getChar();
}
}
#endif
void TQRegExpEngine::error( const char *msg )
{
if ( yyError.isEmpty() )
yyError = TQString::fromLatin1( msg );
}
void TQRegExpEngine::startTokenizer( const TQChar *rx, int len )
{
yyIn = rx;
yyPos0 = 0;
yyPos = 0;
yyLen = len;
yyCh = getChar();
yyCharClass = new CharClass;
yyMinRep = 0;
yyMaxRep = 0;
yyError = TQString();
}
int TQRegExpEngine::getToken()
{
#ifndef TQT_NO_REGEXP_CCLASS
ushort pendingCh = 0;
bool charPending;
bool rangePending;
int tok;
#endif
int prevCh = yyCh;
yyPos0 = yyPos - 1;
#ifndef TQT_NO_REGEXP_CCLASS
yyCharClass->clear();
#endif
yyMinRep = 0;
yyMaxRep = 0;
yyCh = getChar();
switch ( prevCh ) {
case EOS:
yyPos0 = yyPos;
return Tok_Eos;
case '$':
return Tok_Dollar;
case '(':
if ( yyCh == '?' ) {
prevCh = getChar();
yyCh = getChar();
switch ( prevCh ) {
#ifndef TQT_NO_REGEXP_LOOKAHEAD
case '!':
return Tok_NegLookahead;
case '=':
return Tok_PosLookahead;
#endif
case ':':
return Tok_MagicLeftParen;
default:
error( RXERR_LOOKAHEAD );
return Tok_MagicLeftParen;
}
} else {
return Tok_LeftParen;
}
case ')':
return Tok_RightParen;
case '*':
yyMinRep = 0;
yyMaxRep = InftyRep;
return Tok_Quantifier;
case '+':
yyMinRep = 1;
yyMaxRep = InftyRep;
return Tok_Quantifier;
case '.':
#ifndef TQT_NO_REGEXP_CCLASS
yyCharClass->setNegative( TRUE );
#endif
return Tok_CharClass;
case '?':
yyMinRep = 0;
yyMaxRep = 1;
return Tok_Quantifier;
case '[':
#ifndef TQT_NO_REGEXP_CCLASS
if ( yyCh == '^' ) {
yyCharClass->setNegative( TRUE );
yyCh = getChar();
}
charPending = FALSE;
rangePending = FALSE;
do {
if ( yyCh == '-' && charPending && !rangePending ) {
rangePending = TRUE;
yyCh = getChar();
} else {
if ( charPending && !rangePending ) {
yyCharClass->addSingleton( pendingCh );
charPending = FALSE;
}
if ( yyCh == '\\' ) {
yyCh = getChar();
tok = getEscape();
if ( tok == Tok_Word )
tok = '\b';
} else {
tok = Tok_Char | yyCh;
yyCh = getChar();
}
if ( tok == Tok_CharClass ) {
if ( rangePending ) {
yyCharClass->addSingleton( '-' );
yyCharClass->addSingleton( pendingCh );
charPending = FALSE;
rangePending = FALSE;
}
} else if ( (tok & Tok_Char) != 0 ) {
if ( rangePending ) {
yyCharClass->addRange( pendingCh, tok ^ Tok_Char );
charPending = FALSE;
rangePending = FALSE;
} else {
pendingCh = tok ^ Tok_Char;
charPending = TRUE;
}
} else {
error( RXERR_CHARCLASS );
}
}
} while ( yyCh != ']' && yyCh != EOS );
if ( rangePending )
yyCharClass->addSingleton( '-' );
if ( charPending )
yyCharClass->addSingleton( pendingCh );
if ( yyCh == EOS )
error( RXERR_END );
else
yyCh = getChar();
return Tok_CharClass;
#else
error( RXERR_END );
return Tok_Char | '[';
#endif
case '\\':
return getEscape();
case ']':
error( RXERR_LEFTDELIM );
return Tok_Char | ']';
case '^':
return Tok_Caret;
case '{':
#ifndef TQT_NO_REGEXP_INTERVAL
yyMinRep = getRep( 0 );
yyMaxRep = yyMinRep;
if ( yyCh == ',' ) {
yyCh = getChar();
yyMaxRep = getRep( InftyRep );
}
if ( yyMaxRep < yyMinRep )
tqSwap( yyMinRep, yyMaxRep );
if ( yyCh != '}' )
error( RXERR_REPETITION );
yyCh = getChar();
return Tok_Quantifier;
#else
error( RXERR_DISABLED );
return Tok_Char | '{';
#endif
case '|':
return Tok_Bar;
case '}':
error( RXERR_LEFTDELIM );
return Tok_Char | '}';
default:
return Tok_Char | prevCh;
}
}
int TQRegExpEngine::parse( const TQChar *pattern, int len )
{
valid = TRUE;
startTokenizer( pattern, len );
yyTok = getToken();
#ifndef TQT_NO_REGEXP_CAPTURE
yyMayCapture = TRUE;
#else
yyMayCapture = FALSE;
#endif
#ifndef TQT_NO_REGEXP_CAPTURE
int atom = startAtom( FALSE );
#endif
CharClass anything;
Box box( this ); // create InitialState
box.set( anything );
Box rightBox( this ); // create FinalState
rightBox.set( anything );
Box middleBox( this );
parseExpression( &middleBox );
#ifndef TQT_NO_REGEXP_CAPTURE
finishAtom( atom );
#endif
#ifndef TQT_NO_REGEXP_OPTIM
middleBox.setupHeuristics();
#endif
box.cat( middleBox );
box.cat( rightBox );
delete yyCharClass;
yyCharClass = 0;
officialncap = ncap;
#ifndef TQT_NO_REGEXP_BACKREF
if ( nbrefs > ncap )
ncap = nbrefs;
#endif
/*
We use one TQMemArray<int> for all the big data used a lot in
matchHere() and friends.
*/
#ifndef TQT_NO_REGEXP_OPTIM
mmSlideTabSize = TQMAX( minl + 1, 16 );
#else
mmSlideTabSize = 0;
#endif
mmBigArray.resize( (3 + 4 * ncap) * ns + 4 * ncap + mmSlideTabSize );
mmInNextStack = mmBigArray.data();
memset( mmInNextStack, -1, ns * sizeof(int) );
mmCurStack = mmInNextStack + ns;
mmNextStack = mmInNextStack + 2 * ns;
mmCurCapBegin = mmInNextStack + 3 * ns;
mmNextCapBegin = mmCurCapBegin + ncap * ns;
mmCurCapEnd = mmCurCapBegin + 2 * ncap * ns;
mmNextCapEnd = mmCurCapBegin + 3 * ncap * ns;
mmTempCapBegin = mmCurCapBegin + 4 * ncap * ns;
mmTempCapEnd = mmTempCapBegin + ncap;
mmCapBegin = mmTempCapBegin + 2 * ncap;
mmCapEnd = mmTempCapBegin + 3 * ncap;
mmSlideTab = mmTempCapBegin + 4 * ncap;
if ( !yyError.isEmpty() )
return -1;
#ifndef TQT_NO_REGEXP_OPTIM
State *sinit = s[InitialState];
caretAnchored = ( sinit->anchors != 0 );
if ( caretAnchored ) {
TQMap<int, int>& anchors = *sinit->anchors;
TQMap<int, int>::ConstIterator a;
for ( a = anchors.begin(); a != anchors.end(); ++a ) {
if (
#ifndef TQT_NO_REGEXP_ANCHOR_ALT
(*a & Anchor_Alternation) != 0 ||
#endif
(*a & Anchor_Caret) == 0 ) {
caretAnchored = FALSE;
break;
}
}
}
#endif
return yyPos0;
}
void TQRegExpEngine::parseAtom( Box *box )
{
#ifndef TQT_NO_REGEXP_LOOKAHEAD
TQRegExpEngine *eng = 0;
bool neg;
int len;
#endif
if ( (yyTok & Tok_Char) != 0 ) {
box->set( TQChar(yyTok ^ Tok_Char) );
} else {
#ifndef TQT_NO_REGEXP_OPTIM
trivial = FALSE;
#endif
switch ( yyTok ) {
case Tok_Dollar:
box->catAnchor( Anchor_Dollar );
break;
case Tok_Caret:
box->catAnchor( Anchor_Caret );
break;
#ifndef TQT_NO_REGEXP_LOOKAHEAD
case Tok_PosLookahead:
case Tok_NegLookahead:
neg = ( yyTok == Tok_NegLookahead );
eng = new TQRegExpEngine( cs );
len = eng->parse( yyIn + yyPos - 1, yyLen - yyPos + 1 );
if ( len >= 0 )
skipChars( len );
else
error( RXERR_LOOKAHEAD );
box->catAnchor( addLookahead(eng, neg) );
yyTok = getToken();
if ( yyTok != Tok_RightParen )
error( RXERR_LOOKAHEAD );
break;
#endif
#ifndef TQT_NO_REGEXP_ESCAPE
case Tok_Word:
box->catAnchor( Anchor_Word );
break;
case Tok_NonWord:
box->catAnchor( Anchor_NonWord );
break;
#endif
case Tok_LeftParen:
case Tok_MagicLeftParen:
yyTok = getToken();
parseExpression( box );
if ( yyTok != Tok_RightParen )
error( RXERR_END );
break;
case Tok_CharClass:
box->set( *yyCharClass );
break;
case Tok_Quantifier:
error( RXERR_REPETITION );
break;
default:
#ifndef TQT_NO_REGEXP_BACKREF
if ( (yyTok & Tok_BackRef) != 0 )
box->set( yyTok ^ Tok_BackRef );
else
#endif
error( RXERR_DISABLED );
}
}
yyTok = getToken();
}
void TQRegExpEngine::parseFactor( Box *box )
{
#ifndef TQT_NO_REGEXP_CAPTURE
int atom = startAtom( yyMayCapture && yyTok == Tok_LeftParen );
#else
static const int atom = 0;
#endif
#ifndef TQT_NO_REGEXP_INTERVAL
#define YYREDO() \
yyIn = in, yyPos0 = pos0, yyPos = pos, yyLen = len, yyCh = ch, \
*yyCharClass = charClass, yyMinRep = 0, yyMaxRep = 0, yyTok = tok
const TQChar *in = yyIn;
int pos0 = yyPos0;
int pos = yyPos;
int len = yyLen;
int ch = yyCh;
CharClass charClass;
if ( yyTok == Tok_CharClass )
charClass = *yyCharClass;
int tok = yyTok;
bool mayCapture = yyMayCapture;
#endif
parseAtom( box );
#ifndef TQT_NO_REGEXP_CAPTURE
finishAtom( atom );
#endif
if ( yyTok == Tok_Quantifier ) {
#ifndef TQT_NO_REGEXP_OPTIM
trivial = FALSE;
#endif
if ( yyMaxRep == InftyRep ) {
box->plus( atom );
#ifndef TQT_NO_REGEXP_INTERVAL
} else if ( yyMaxRep == 0 ) {
box->clear();
#endif
}
if ( yyMinRep == 0 )
box->opt();
#ifndef TQT_NO_REGEXP_INTERVAL
yyMayCapture = FALSE;
int alpha = ( yyMinRep == 0 ) ? 0 : yyMinRep - 1;
int beta = ( yyMaxRep == InftyRep ) ? 0 : yyMaxRep - ( alpha + 1 );
Box rightBox( this );
int i;
for ( i = 0; i < beta; i++ ) {
YYREDO();
Box leftBox( this );
parseAtom( &leftBox );
leftBox.cat( rightBox );
leftBox.opt();
rightBox = leftBox;
}
for ( i = 0; i < alpha; i++ ) {
YYREDO();
Box leftBox( this );
parseAtom( &leftBox );
leftBox.cat( rightBox );
rightBox = leftBox;
}
rightBox.cat( *box );
*box = rightBox;
#endif
yyTok = getToken();
#ifndef TQT_NO_REGEXP_INTERVAL
yyMayCapture = mayCapture;
#endif
}
#undef YYREDO
}
void TQRegExpEngine::parseTerm( Box *box )
{
#ifndef TQT_NO_REGEXP_OPTIM
if ( yyTok != Tok_Eos && yyTok != Tok_RightParen && yyTok != Tok_Bar )
parseFactor( box );
#endif
while ( yyTok != Tok_Eos && yyTok != Tok_RightParen && yyTok != Tok_Bar ) {
Box rightBox( this );
parseFactor( &rightBox );
box->cat( rightBox );
}
}
void TQRegExpEngine::parseExpression( Box *box )
{
parseTerm( box );
while ( yyTok == Tok_Bar ) {
#ifndef TQT_NO_REGEXP_OPTIM
trivial = FALSE;
#endif
Box rightBox( this );
yyTok = getToken();
parseTerm( &rightBox );
box->orx( rightBox );
}
}
/*
The struct TQRegExpPrivate contains the private data of a regular
expression other than the automaton. It makes it possible for many
TQRegExp objects to use the same TQRegExpEngine object with different
TQRegExpPrivate objects.
*/
struct TQRegExpPrivate
{
TQString pattern; // regular-expression or wildcard pattern
TQString rxpattern; // regular-expression pattern
#ifndef TQT_NO_REGEXP_WILDCARD
bool wc : 1; // wildcard mode?
#endif
bool min : 1; // minimal matching? (instead of maximal)
bool cs : 1; // case sensitive?
#ifndef TQT_NO_REGEXP_CAPTURE
TQString t; // last string passed to TQRegExp::search() or searchRev()
TQStringList capturedCache; // what TQRegExp::capturedTexts() returned last
#endif
TQMemArray<int> captured; // what TQRegExpEngine::search() returned last
TQRegExpPrivate() { captured.fill( -1, 2 ); }
};
#ifndef TQT_NO_REGEXP_OPTIM
static TQSingleCleanupHandler<TQCache<TQRegExpEngine> > cleanup_cache;
# ifndef TQT_THREAD_SUPPORT
static TQCache<TQRegExpEngine> *engineCache = 0;
# endif // TQT_THREAD_SUPPORT
#endif // TQT_NO_REGEXP_OPTIM
static void regexpEngine( TQRegExpEngine *&eng, const TQString &pattern,
bool caseSensitive, bool deref )
{
# ifdef TQT_THREAD_SUPPORT
static TQThreadStorage<TQCache<TQRegExpEngine> *> engineCaches;
TQCache<TQRegExpEngine> *engineCache = 0;
TQThreadInstance *currentThread = TQThreadInstance::current();
if (currentThread)
engineCache = engineCaches.localData();
#endif // TQT_THREAD_SUPPORT
if ( !deref ) {
#ifndef TQT_NO_REGEXP_OPTIM
# ifdef TQT_THREAD_SUPPORT
if ( currentThread )
# endif
{
if ( engineCache != 0 ) {
eng = engineCache->take( pattern );
if ( eng == 0 || eng->caseSensitive() != caseSensitive ) {
delete eng;
} else {
eng->ref();
return;
}
}
}
#endif // TQT_NO_REGEXP_OPTIM
eng = new TQRegExpEngine( pattern, caseSensitive );
return;
}
if ( eng->deref() ) {
#ifndef TQT_NO_REGEXP_OPTIM
# ifdef TQT_THREAD_SUPPORT
if ( currentThread )
# endif
{
if ( engineCache == 0 ) {
engineCache = new TQCache<TQRegExpEngine>;
engineCache->setAutoDelete( TRUE );
# ifdef TQT_THREAD_SUPPORT
engineCaches.setLocalData(engineCache);
# else
cleanup_cache.set( &engineCache );
# endif // !TQT_THREAD_SUPPORT
}
if ( !pattern.isNull() &&
engineCache->insert(pattern, eng, 4 + pattern.length() / 4) )
return;
}
#else
Q_UNUSED( pattern );
#endif // TQT_NO_REGEXP_OPTIM
delete eng;
eng = 0;
}
}
/*!
\enum TQRegExp::CaretMode
The CaretMode enum defines the different meanings of the caret
(<b>^</b>) in a regular expression. The possible values are:
\value CaretAtZero
The caret corresponds to index 0 in the searched string.
\value CaretAtOffset
The caret corresponds to the start offset of the search.
\value CaretWontMatch
The caret never matches.
*/
/*!
Constructs an empty regexp.
\sa isValid() errorString()
*/
TQRegExp::TQRegExp()
: eng( 0 )
{
priv = new TQRegExpPrivate;
#ifndef TQT_NO_REGEXP_WILDCARD
priv->wc = FALSE;
#endif
priv->min = FALSE;
priv->cs = TRUE;
}
/*!
Constructs a regular expression object for the given \a pattern
string. The pattern must be given using wildcard notation if \a
wildcard is TRUE (default is FALSE). The pattern is case
sensitive, unless \a caseSensitive is FALSE. Matching is greedy
(maximal), but can be changed by calling setMinimal().
\sa setPattern() setCaseSensitive() setWildcard() setMinimal()
*/
TQRegExp::TQRegExp( const TQString& pattern, bool caseSensitive, bool wildcard )
: eng( 0 )
{
priv = new TQRegExpPrivate;
priv->pattern = pattern;
#ifndef TQT_NO_REGEXP_WILDCARD
priv->wc = wildcard;
#endif
priv->min = FALSE;
priv->cs = caseSensitive;
}
/*!
Constructs a regular expression as a copy of \a rx.
\sa operator=()
*/
TQRegExp::TQRegExp( const TQRegExp& rx )
: eng( 0 )
{
priv = new TQRegExpPrivate;
operator=( rx );
}
/*!
Destroys the regular expression and cleans up its internal data.
*/
TQRegExp::~TQRegExp()
{
invalidateEngine();
delete priv;
}
/*!
Copies the regular expression \a rx and returns a reference to the
copy. The case sensitivity, wildcard and minimal matching options
are also copied.
*/
TQRegExp& TQRegExp::operator=( const TQRegExp& rx )
{
TQRegExpEngine *otherEng = rx.eng;
if ( otherEng != 0 )
otherEng->ref();
invalidateEngine();
eng = otherEng;
priv->pattern = rx.priv->pattern;
priv->rxpattern = rx.priv->rxpattern;
#ifndef TQT_NO_REGEXP_WILDCARD
priv->wc = rx.priv->wc;
#endif
priv->min = rx.priv->min;
priv->cs = rx.priv->cs;
#ifndef TQT_NO_REGEXP_CAPTURE
priv->t = rx.priv->t;
priv->capturedCache = rx.priv->capturedCache;
#endif
priv->captured = rx.priv->captured;
return *this;
}
/*!
Returns TRUE if this regular expression is equal to \a rx;
otherwise returns FALSE.
Two TQRegExp objects are equal if they have the same pattern
strings and the same settings for case sensitivity, wildcard and
minimal matching.
*/
bool TQRegExp::operator==( const TQRegExp& rx ) const
{
return priv->pattern == rx.priv->pattern &&
#ifndef TQT_NO_REGEXP_WILDCARD
priv->wc == rx.priv->wc &&
#endif
priv->min == rx.priv->min &&
priv->cs == rx.priv->cs;
}
/*!
\fn bool TQRegExp::operator!=( const TQRegExp& rx ) const
Returns TRUE if this regular expression is not equal to \a rx;
otherwise returns FALSE.
\sa operator==()
*/
/*!
Returns TRUE if the pattern string is empty; otherwise returns
FALSE.
If you call exactMatch() with an empty pattern on an empty string
it will return TRUE; otherwise it returns FALSE since it operates
over the whole string. If you call search() with an empty pattern
on \e any string it will return the start offset (0 by default)
because the empty pattern matches the 'emptiness' at the start of
the string. In this case the length of the match returned by
matchedLength() will be 0.
See TQString::isEmpty().
*/
bool TQRegExp::isEmpty() const
{
return priv->pattern.isEmpty();
}
/*!
Returns TRUE if the regular expression is valid; otherwise returns
FALSE. An invalid regular expression never matches.
The pattern <b>[a-z</b> is an example of an invalid pattern, since
it lacks a closing square bracket.
Note that the validity of a regexp may also depend on the setting
of the wildcard flag, for example <b>*.html</b> is a valid
wildcard regexp but an invalid full regexp.
\sa errorString()
*/
bool TQRegExp::isValid() const
{
if ( priv->pattern.isEmpty() ) {
return TRUE;
} else {
prepareEngine();
return eng->isValid();
}
}
/*!
Returns the pattern string of the regular expression. The pattern
has either regular expression syntax or wildcard syntax, depending
on wildcard().
\sa setPattern()
*/
TQString TQRegExp::pattern() const
{
return priv->pattern;
}
/*!
Sets the pattern string to \a pattern. The case sensitivity,
wildcard and minimal matching options are not changed.
\sa pattern()
*/
void TQRegExp::setPattern( const TQString& pattern )
{
if ( priv->pattern != pattern ) {
priv->pattern = pattern;
invalidateEngine();
}
}
/*!
Returns TRUE if case sensitivity is enabled; otherwise returns
FALSE. The default is TRUE.
\sa setCaseSensitive()
*/
bool TQRegExp::caseSensitive() const
{
return priv->cs;
}
/*!
Sets case sensitive matching to \a sensitive.
If \a sensitive is TRUE, <b>\\.txt$</b> matches \c{readme.txt} but
not \c{README.TXT}.
\sa caseSensitive()
*/
void TQRegExp::setCaseSensitive( bool sensitive )
{
if ( sensitive != priv->cs ) {
priv->cs = sensitive;
invalidateEngine();
}
}
#ifndef TQT_NO_REGEXP_WILDCARD
/*!
Returns TRUE if wildcard mode is enabled; otherwise returns FALSE.
The default is FALSE.
\sa setWildcard()
*/
bool TQRegExp::wildcard() const
{
return priv->wc;
}
/*!
Sets the wildcard mode for the regular expression. The default is
FALSE.
Setting \a wildcard to TRUE enables simple shell-like wildcard
matching. (See \link #wildcard-matching wildcard matching
(globbing) \endlink.)
For example, <b>r*.txt</b> matches the string \c{readme.txt} in
wildcard mode, but does not match \c{readme}.
\sa wildcard()
*/
void TQRegExp::setWildcard( bool wildcard )
{
if ( wildcard != priv->wc ) {
priv->wc = wildcard;
invalidateEngine();
}
}
#endif
/*!
Returns TRUE if minimal (non-greedy) matching is enabled;
otherwise returns FALSE.
\sa setMinimal()
*/
bool TQRegExp::minimal() const
{
return priv->min;
}
/*!
Enables or disables minimal matching. If \a minimal is FALSE,
matching is greedy (maximal) which is the default.
For example, suppose we have the input string "We must be
\<b>bold\</b>, very \<b>bold\</b>!" and the pattern
<b>\<b>.*\</b></b>. With the default greedy (maximal) matching,
the match is "We must be <u>\<b>bold\</b>, very
\<b>bold\</b></u>!". But with minimal (non-greedy) matching the
first match is: "We must be <u>\<b>bold\</b></u>, very
\<b>bold\</b>!" and the second match is "We must be \<b>bold\</b>,
very <u>\<b>bold\</b></u>!". In practice we might use the pattern
<b>\<b>[^\<]+\</b></b> instead, although this will still fail for
nested tags.
\sa minimal()
*/
void TQRegExp::setMinimal( bool minimal )
{
priv->min = minimal;
}
/*!
Returns TRUE if \a str is matched exactly by this regular
expression; otherwise returns FALSE. You can determine how much of
the string was matched by calling matchedLength().
For a given regexp string, R, exactMatch("R") is the equivalent of
search("^R$") since exactMatch() effectively encloses the regexp
in the start of string and end of string anchors, except that it
sets matchedLength() differently.
For example, if the regular expression is <b>blue</b>, then
exactMatch() returns TRUE only for input \c blue. For inputs \c
bluebell, \c blutak and \c lightblue, exactMatch() returns FALSE
and matchedLength() will return 4, 3 and 0 respectively.
Although const, this function sets matchedLength(),
capturedTexts() and pos().
\sa search() searchRev() TQRegExpValidator
*/
bool TQRegExp::exactMatch( const TQString& str ) const
{
prepareEngineForMatch( str );
eng->match( str, 0, priv->min, TRUE, 0, priv->captured );
if ( priv->captured[1] == (int) str.length() ) {
return TRUE;
} else {
priv->captured[0] = 0;
priv->captured[1] = eng->partialMatchLength();
return FALSE;
}
}
#ifndef TQT_NO_COMPAT
/*! \obsolete
Attempts to match in \a str, starting from position \a index.
Returns the position of the match, or -1 if there was no match.
The length of the match is stored in \a *len, unless \a len is a
null pointer.
If \a indexIsStart is TRUE (the default), the position \a index in
the string will match the start of string anchor, <b>^</b>, in the
regexp, if present. Otherwise, position 0 in \a str will match.
Use search() and matchedLength() instead of this function.
\sa TQString::mid() TQConstString
*/
int TQRegExp::match( const TQString& str, int index, int *len,
bool indexIsStart ) const
{
int pos = search( str, index, indexIsStart ? CaretAtOffset : CaretAtZero );
if ( len != 0 )
*len = matchedLength();
return pos;
}
#endif // TQT_NO_COMPAT
int TQRegExp::search( const TQString& str, int offset ) const
{
return search( str, offset, CaretAtZero );
}
/*!
Attempts to find a match in \a str from position \a offset (0 by
default). If \a offset is -1, the search starts at the last
character; if -2, at the next to last character; etc.
Returns the position of the first match, or -1 if there was no
match.
The \a caretMode parameter can be used to instruct whether <b>^</b>
should match at index 0 or at \a offset.
You might prefer to use TQString::find(), TQString::contains() or
even TQStringList::grep(). To replace matches use
TQString::replace().
Example:
\code
TQString str = "offsets: 1.23 .50 71.00 6.00";
TQRegExp rx( "\\d*\\.\\d+" ); // primitive floating point matching
int count = 0;
int pos = 0;
while ( (pos = rx.search(str, pos)) != -1 ) {
count++;
pos += rx.matchedLength();
}
// pos will be 9, 14, 18 and finally 24; count will end up as 4
\endcode
Although const, this function sets matchedLength(),
capturedTexts() and pos().
\sa searchRev() exactMatch()
*/
int TQRegExp::search( const TQString& str, int offset, CaretMode caretMode ) const
{
prepareEngineForMatch( str );
if ( offset < 0 )
offset += str.length();
eng->match( str, offset, priv->min, FALSE, caretIndex(offset, caretMode),
priv->captured );
return priv->captured[0];
}
int TQRegExp::searchRev( const TQString& str, int offset ) const
{
return searchRev( str, offset, CaretAtZero );
}
/*!
Attempts to find a match backwards in \a str from position \a
offset. If \a offset is -1 (the default), the search starts at the
last character; if -2, at the next to last character; etc.
Returns the position of the first match, or -1 if there was no
match.
The \a caretMode parameter can be used to instruct whether <b>^</b>
should match at index 0 or at \a offset.
Although const, this function sets matchedLength(),
capturedTexts() and pos().
\warning Searching backwards is much slower than searching
forwards.
\sa search() exactMatch()
*/
int TQRegExp::searchRev( const TQString& str, int offset,
CaretMode caretMode ) const
{
prepareEngineForMatch( str );
if ( offset < 0 )
offset += str.length();
if ( offset < 0 || offset > (int) str.length() ) {
priv->captured.detach();
priv->captured.fill( -1 );
return -1;
}
while ( offset >= 0 ) {
eng->match( str, offset, priv->min, TRUE, caretIndex(offset, caretMode),
priv->captured );
if ( priv->captured[0] == offset )
return offset;
offset--;
}
return -1;
}
/*!
Returns the length of the last matched string, or -1 if there was
no match.
\sa exactMatch() search() searchRev()
*/
int TQRegExp::matchedLength() const
{
return priv->captured[1];
}
#ifndef TQT_NO_REGEXP_CAPTURE
/*!
Returns the number of captures contained in the regular expression.
*/
int TQRegExp::numCaptures() const
{
prepareEngine();
return eng->numCaptures();
}
/*!
Returns a list of the captured text strings.
The first string in the list is the entire matched string. Each
subsequent list element contains a string that matched a
(capturing) subexpression of the regexp.
For example:
\code
TQRegExp rx( "(\\d+)(\\s*)(cm|inch(es)?)" );
int pos = rx.search( "Length: 36 inches" );
TQStringList list = rx.capturedTexts();
// list is now ( "36 inches", "36", " ", "inches", "es" )
\endcode
The above example also captures elements that may be present but
which we have no interest in. This problem can be solved by using
non-capturing parentheses:
\code
TQRegExp rx( "(\\d+)(?:\\s*)(cm|inch(?:es)?)" );
int pos = rx.search( "Length: 36 inches" );
TQStringList list = rx.capturedTexts();
// list is now ( "36 inches", "36", "inches" )
\endcode
Note that if you want to iterate over the list, you should iterate
over a copy, e.g.
\code
TQStringList list = rx.capturedTexts();
TQStringList::Iterator it = list.begin();
while( it != list.end() ) {
myProcessing( *it );
++it;
}
\endcode
Some regexps can match an indeterminate number of times. For
example if the input string is "Offsets: 12 14 99 231 7" and the
regexp, \c{rx}, is <b>(\\d+)+</b>, we would hope to get a list of
all the numbers matched. However, after calling
\c{rx.search(str)}, capturedTexts() will return the list ( "12",
"12" ), i.e. the entire match was "12" and the first subexpression
matched was "12". The correct approach is to use cap() in a \link
#cap_in_a_loop loop \endlink.
The order of elements in the string list is as follows. The first
element is the entire matching string. Each subsequent element
corresponds to the next capturing open left parentheses. Thus
capturedTexts()[1] is the text of the first capturing parentheses,
capturedTexts()[2] is the text of the second and so on
(corresponding to $1, $2, etc., in some other regexp languages).
\sa cap() pos() exactMatch() search() searchRev()
*/
TQStringList TQRegExp::capturedTexts()
{
if ( priv->capturedCache.isEmpty() ) {
for ( int i = 0; i < (int) priv->captured.size(); i += 2 ) {
TQString m;
if ( priv->captured[i + 1] == 0 )
m = TQString::fromLatin1( "" );
else if ( priv->captured[i] >= 0 )
m = priv->t.mid( priv->captured[i],
priv->captured[i + 1] );
priv->capturedCache.append( m );
}
priv->t = TQString::null;
}
return priv->capturedCache;
}
/*!
Returns the text captured by the \a nth subexpression. The entire
match has index 0 and the parenthesized subexpressions have
indices starting from 1 (excluding non-capturing parentheses).
\code
TQRegExp rxlen( "(\\d+)(?:\\s*)(cm|inch)" );
int pos = rxlen.search( "Length: 189cm" );
if ( pos > -1 ) {
TQString value = rxlen.cap( 1 ); // "189"
TQString unit = rxlen.cap( 2 ); // "cm"
// ...
}
\endcode
The order of elements matched by cap() is as follows. The first
element, cap(0), is the entire matching string. Each subsequent
element corresponds to the next capturing open left parentheses.
Thus cap(1) is the text of the first capturing parentheses, cap(2)
is the text of the second, and so on.
\target cap_in_a_loop
Some patterns may lead to a number of matches which cannot be
determined in advance, for example:
\code
TQRegExp rx( "(\\d+)" );
str = "Offsets: 12 14 99 231 7";
TQStringList list;
pos = 0;
while ( pos >= 0 ) {
pos = rx.search( str, pos );
if ( pos > -1 ) {
list += rx.cap( 1 );
pos += rx.matchedLength();
}
}
// list contains "12", "14", "99", "231", "7"
\endcode
\sa capturedTexts() pos() exactMatch() search() searchRev()
*/
TQString TQRegExp::cap( int nth )
{
if ( nth < 0 || nth >= (int) priv->captured.size() / 2 ) {
return TQString::null;
} else {
return capturedTexts()[nth];
}
}
/*!
Returns the position of the \a nth captured text in the searched
string. If \a nth is 0 (the default), pos() returns the position
of the whole match.
Example:
\code
TQRegExp rx( "/([a-z]+)/([a-z]+)" );
rx.search( "Output /dev/null" ); // returns 7 (position of /dev/null)
rx.pos( 0 ); // returns 7 (position of /dev/null)
rx.pos( 1 ); // returns 8 (position of dev)
rx.pos( 2 ); // returns 12 (position of null)
\endcode
For zero-length matches, pos() always returns -1. (For example, if
cap(4) would return an empty string, pos(4) returns -1.) This is
due to an implementation tradeoff.
\sa capturedTexts() exactMatch() search() searchRev()
*/
int TQRegExp::pos( int nth )
{
if ( nth < 0 || nth >= (int) priv->captured.size() / 2 )
return -1;
else
return priv->captured[2 * nth];
}
/*!
Returns a text string that explains why a regexp pattern is
invalid the case being; otherwise returns "no error occurred".
\sa isValid()
*/
TQString TQRegExp::errorString()
{
if ( isValid() ) {
return TQString( RXERR_OK );
} else {
return eng->errorString();
}
}
#endif
/*!
Returns the string \a str with every regexp special character
escaped with a backslash. The special characters are $, (, ), *, +,
., ?, [, \, ], ^, {, | and }.
Example:
\code
s1 = TQRegExp::escape( "bingo" ); // s1 == "bingo"
s2 = TQRegExp::escape( "f(x)" ); // s2 == "f\\(x\\)"
\endcode
This function is useful to construct regexp patterns dynamically:
\code
TQRegExp rx( "(" + TQRegExp::escape(name) +
"|" + TQRegExp::escape(alias) + ")" );
\endcode
*/
TQString TQRegExp::escape( const TQString& str )
{
static const char meta[] = "$()*+.?[\\]^{|}";
TQString quoted = str;
int i = 0;
while ( i < (int) quoted.length() ) {
if ( strchr(meta, quoted[i].latin1()) != 0 )
quoted.insert( i++, "\\" );
i++;
}
return quoted;
}
void TQRegExp::prepareEngine() const
{
if ( eng == 0 ) {
#ifndef TQT_NO_REGEXP_WILDCARD
if ( priv->wc )
priv->rxpattern = wc2rx( priv->pattern );
else
#endif
priv->rxpattern = priv->pattern.isNull() ? TQString::fromLatin1( "" )
: priv->pattern;
TQRegExp *that = (TQRegExp *) this;
// that->eng = newEngine( priv->rxpattern, priv->cs );
regexpEngine( that->eng, priv->rxpattern, priv->cs, FALSE );
priv->captured.detach();
priv->captured.fill( -1, 2 + 2 * eng->numCaptures() );
}
}
void TQRegExp::prepareEngineForMatch( const TQString& str ) const
{
prepareEngine();
#ifndef TQT_NO_REGEXP_CAPTURE
priv->t = str;
priv->capturedCache.clear();
#else
Q_UNUSED( str );
#endif
}
void TQRegExp::invalidateEngine()
{
if ( eng != 0 ) {
regexpEngine( eng, priv->rxpattern, priv->cs, TRUE );
priv->rxpattern = TQString();
eng = 0;
}
}
int TQRegExp::caretIndex( int offset, CaretMode caretMode )
{
if ( caretMode == CaretAtZero ) {
return 0;
} else if ( caretMode == CaretAtOffset ) {
return offset;
} else { // CaretWontMatch
return -1;
}
}
#endif // TQT_NO_REGEXP
|